求以下定积分 ∫( lnx/x)dx(上限正无穷,下限e) ∫ {x/[(9-x^2)^1/2]}dx(上限3,下限-3)∫ {[(x^2-1)^1/2]/x}dx(上限-1,下限-2)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 22:44:15
求以下定积分 ∫( lnx/x)dx(上限正无穷,下限e) ∫ {x/[(9-x^2)^1/2]}dx(上限3,下限-3)∫ {[(x^2-1)^1/2]/x}dx(上限-1,下限-2)
x͒N@_6P ʤecI0!1؀IQQcJЈʏ+`|ҙ*[7.ڙw9=$9c6#0.Ie6H@\ ^^;R1޽>£ȅHsfEC,`|+rzJOT5(ϸ 3sI5lq3zf@6z]&3 wN GXbu\h*p 6>W5NF>S\Y_MHke]Ej !p|$naAγ+, -p'ņ A+JN8G`v RvEo>R6>ѬV' i5 ·.ӍzE'3mn | ׿

求以下定积分 ∫( lnx/x)dx(上限正无穷,下限e) ∫ {x/[(9-x^2)^1/2]}dx(上限3,下限-3)∫ {[(x^2-1)^1/2]/x}dx(上限-1,下限-2)
求以下定积分 ∫( lnx/x)dx(上限正无穷,下限e) ∫ {x/[(9-x^2)^1/2]}dx(上限3,下限-3)
∫ {[(x^2-1)^1/2]/x}dx(上限-1,下限-2)

求以下定积分 ∫( lnx/x)dx(上限正无穷,下限e) ∫ {x/[(9-x^2)^1/2]}dx(上限3,下限-3)∫ {[(x^2-1)^1/2]/x}dx(上限-1,下限-2)
inf表示无穷,pi表示圆周率
1.∫(e,+inf)lnx/x dx=∫(e,+inf) lnx d(lnx)=[(lnx)^2/2]|(e,+inf)=结果是无穷
2.奇函数在对称区间上的积分为0
3.这个积分表上有啊,定积分的结果为(x^2-1)^(1/2)-arccos(1/|x|)+C
所以结果为arccos(1/2)-√3=pi/3-√3
如果要推导的话换元x=sect可行.

第一个(lnx)^2 正无穷
第二个 -(9-x^2)^(1/2) ,0