已知函数f(x)=2(sinx+cosx)+2sinxcosx+1,求f(x)的值域(1)求函数的值域;(2)若不等式f(x)≥m对于x∈【0,π/2】都成立,求m的最大值

来源:学生作业帮助网 编辑:作业帮 时间:2024/12/01 19:17:36
已知函数f(x)=2(sinx+cosx)+2sinxcosx+1,求f(x)的值域(1)求函数的值域;(2)若不等式f(x)≥m对于x∈【0,π/2】都成立,求m的最大值
x){}K}6uCFFqf^vr~q bj<R|Vӆ=ON0D7lPE';z|Qܧw>Wq F&lc krF=tr6IESa ^;Nygב`d 5eCs kE!m5D=c+|dRO(A76ϗoxwK.0AP[IϦo{?ҁ4@ Fj8`Rzxt=ٱ+hTa,r:3EՈ3@6yv

已知函数f(x)=2(sinx+cosx)+2sinxcosx+1,求f(x)的值域(1)求函数的值域;(2)若不等式f(x)≥m对于x∈【0,π/2】都成立,求m的最大值
已知函数f(x)=2(sinx+cosx)+2sinxcosx+1,求f(x)的值域
(1)求函数的值域;
(2)若不等式f(x)≥m对于x∈【0,π/2】都成立,求m的最大值

已知函数f(x)=2(sinx+cosx)+2sinxcosx+1,求f(x)的值域(1)求函数的值域;(2)若不等式f(x)≥m对于x∈【0,π/2】都成立,求m的最大值
答:
f(x)=2(sinx+cosx)+2sinxcosx+1
=2(sinx+cosx)+2sinxcosx+sin²x+cos²x
=2(sinx+cosx)+(sinx+cosx)²
=(sinx+cosx+1)²-1
(1)设t=sinx+cosx∈[-√2,√2]
所以:f(x)=(t+1)²-1
对称轴t=-1,最小值-1
t=√2时取得最大值,最大值(√2)²+2√2=2√2+2
所以:f(x)的值域为[-1,2√2+2]
(2)0=m
所以:m的最大值为3