已知函数f(x)=2(2cosx^2-1)+sinx^2-4cos的最大值和最小值

来源:学生作业帮助网 编辑:作业帮 时间:2024/12/02 13:35:44
已知函数f(x)=2(2cosx^2-1)+sinx^2-4cos的最大值和最小值
x){}K}6uCFQr~qEvqfey>ٜK?mtRȶI*ҧ)v6r X'HuH+5FR5JhyFƚy]s}cԣ:䁔!Tp o Tl6Ӟwӓ@ Vk3<;PPs

已知函数f(x)=2(2cosx^2-1)+sinx^2-4cos的最大值和最小值
已知函数f(x)=2(2cosx^2-1)+sinx^2-4cos的最大值和最小值

已知函数f(x)=2(2cosx^2-1)+sinx^2-4cos的最大值和最小值
f(x)=4cos²x-2+sin²x-4cosx
=3cos²x-4cosx-1
=3(cosx-2/3)²-7/3
∵-1≤cosx≤1
∴cosx=2/3时,取得最小值为-7/3;cosx=-1时,取得最大值为6