Rt三角形ABC内接于圆O,AC=BC,∠BAC的平分线AD与圆O交于点D,与BC交于点E,延长BD,与AC的延长线交于点F,连结CD,G是CD中点,连结OG.若OG*DE=3(2-根号2),求圆O面积
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 09:45:28
xS]OP+XiӮ[IOq+
팉W?pH0
+uWߖ2B
o>>4_l_+
QBZ>錢b2m(jIsaPi7١dڿ`!8}
w9}RFPWH'Y]c{ϛ6BX8hwy'XNLi%\ț.OaXy5i$2MU
@&wfaHj8
SBR,:
4bQ...sZkqydOn?o kp Lmk#$>J9 |-!,]BR,T^.vX'X=^'EqM0=Ss*:-|4$NXÃS]x+F:ǙlZ55jJ6jܣ5J<
9$v2#g 8FL;L9cȑl^
[3rʲ- Òa[fJ,ޫȋt楜6m"$<bIiP5xpl|E/'D[㼺1 Ѫ}
Rt三角形ABC内接于圆O,AC=BC,∠BAC的平分线AD与圆O交于点D,与BC交于点E,延长BD,与AC的延长线交于点F,连结CD,G是CD中点,连结OG.若OG*DE=3(2-根号2),求圆O面积
Rt三角形ABC内接于圆O,AC=BC,∠BAC的平分线AD与圆O交于点D,与BC交于点E,延长BD,与AC的延长线交于点F,连结CD,G是CD中点,连结OG.
若OG*DE=3(2-根号2),求圆O面积
Rt三角形ABC内接于圆O,AC=BC,∠BAC的平分线AD与圆O交于点D,与BC交于点E,延长BD,与AC的延长线交于点F,连结CD,G是CD中点,连结OG.若OG*DE=3(2-根号2),求圆O面积
连接OD,交BC与点H,连接OC,
由CG=GD知OG⊥CD,故∠ODG=∠OCG=45°+22.5°=67.5°
又∠BED=∠EAB+∠EBA=67.5°
故∠ODG=∠BED,又∠OGD=∠BDE=90°
∴△OGD∽△BDE
得出OG/BD=GD/DE即BD*GD=OG*DE=3(2-sqrt2)
又GD=CD/2=BD/2,故BD^2=6(2-sqrt2)
又BD^2=BH^2+HD^2=BH^2+(OD-OH)^2
设AO=OB=OD=r,
则BH=OH=sqrt2r/2,
代入得(r^2/2)+[(2-sqrt2)r/2]^2=6(2-sqrt2)
解得r^2=6
故S=πr^2=6π.