设f(x)是定义在R上的奇函数,且对任意实数x,恒有f(x+2)=-f(x).当x∈[-2,0]时,f(x)=2x-x^3(1).求证:f(x)是周期函数(2).当x∈[2,4]时,求f(x)的解析式(3).求f(0)+f(1)+f(2)+...+f(2011)的值错了错了,是当x∈[0,2]时,f(x

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/02 14:18:53
设f(x)是定义在R上的奇函数,且对任意实数x,恒有f(x+2)=-f(x).当x∈[-2,0]时,f(x)=2x-x^3(1).求证:f(x)是周期函数(2).当x∈[2,4]时,求f(x)的解析式(3).求f(0)+f(1)+f(2)+...+f(2011)的值错了错了,是当x∈[0,2]时,f(x
xUN1/3#DjYVnf(B6* _ B}mϓiuMg ]%*tCuÃrFnΙIi+WKQa-wPuK%ֱ\-sbQgi6ZD"{K9MFe3=$F.a*9KQ À6MP&Ua{߿Y[$6֬Zr!t'ם($!ݩ?_nP֫~ r.\?D>1k\EzD,u:,eY[ pafbxuQ`^rrIۡZ ^"l*_VZG$pA}U^-NgՓ46A+֠zS_y5S..20#TQTxYQ1 ,Z"x`D&V/( Vq`S"Far0Ǡq Up QՉ^P OiKaQHA+& qbߧ+I6:,nDRYTr; +QH߆S f<64

设f(x)是定义在R上的奇函数,且对任意实数x,恒有f(x+2)=-f(x).当x∈[-2,0]时,f(x)=2x-x^3(1).求证:f(x)是周期函数(2).当x∈[2,4]时,求f(x)的解析式(3).求f(0)+f(1)+f(2)+...+f(2011)的值错了错了,是当x∈[0,2]时,f(x
设f(x)是定义在R上的奇函数,且对任意实数x,恒有f(x+2)=-f(x).当x∈[-2,0]时,f(x)=2x-x^3
(1).求证:f(x)是周期函数
(2).当x∈[2,4]时,求f(x)的解析式
(3).求f(0)+f(1)+f(2)+...+f(2011)的值
错了错了,是当x∈[0,2]时,f(x)=2x-x^3

设f(x)是定义在R上的奇函数,且对任意实数x,恒有f(x+2)=-f(x).当x∈[-2,0]时,f(x)=2x-x^3(1).求证:f(x)是周期函数(2).当x∈[2,4]时,求f(x)的解析式(3).求f(0)+f(1)+f(2)+...+f(2011)的值错了错了,是当x∈[0,2]时,f(x
因为 f(x+2)=-f(x),所以 f(x+4) = -f(x+2)
所以 f(x) = f(x+4)
则f(x) 的周期为4.
x∈[-2,0] 时,-x∈[0,2],
则f(-x)=2(-x)-(-x)^2=-2x- x^2,
因为f(x)是奇函数,
所以f(x)=-f(-x)=-[ -2x- x^2]= 2x+x^2 (x∈[-2,0] 时).
当x∈[2,4]时,x-4∈[-2,0],
所以f(x-4)=2(x-4)+(x-4)^2
因为f(x) 的周期为4,
所以f(x)=f(x-4)= 2(x-4)+(x-4)^2
=x^2-6x+8(x∈[2,4]时).
当x∈[0,2]时,f(x)=2x-x^2
当x∈[2,4]时,f(x)= =x^2-6x+8
所以f(0)=0,f(1)=1,f(2)=0,f(3)=-1.
f(0)+f(1)+f(2)+f(3)=0.
因为f(x) 的周期为4,
所以f(0)+f(1)+f(2)+……+f(2012)
= [f(0)+f(1)+f(2)+f(3)]+[ f(4)+f(5)+f(6)+f(7)]+……+[ f(2008)+f(2009)+f(2010)+f(2011)]+ f(2012)
=0+0+……+0+ f(2012)
= f(0)
=0.

⑴f(x+2)=-f(x)
f(x+2)=-f(x+4)
f(x)=f(x+4) T=4
⑵x∈[-2,0]
x+4∈[2,4]
f(x)=f(x+4)
∴f(x)=2x-x^3
⑶f(0)=0
f(1)=1
这样你可以得到周期。

f((x+2)+2)=f(x)
所以f(x+4)=f(x)
所以是周期为4的周期函数
解析式相同 因为周期是4
周期是4 所以原式=504f(1)+504f(2)+504f(3)+504f(4)
所以为0

(1)、f(x+4)=-f(x+2)=f(x),所以f(x)是周期为4的周期函数;
(2)、x∈[2,4]时,(x-4)∈[-2,0],所以f(x)=f(x-4)=2(x-4)-(x-4)^3
(3)、根据已知条件易知,f(3)=-f(1),f(4)=-f(2),所以,f(1)+f(2)+f(3)+f(4)=0,同理f(5)+f(6)+f(7)+f(8)=0,……,f(2005)+...

全部展开

(1)、f(x+4)=-f(x+2)=f(x),所以f(x)是周期为4的周期函数;
(2)、x∈[2,4]时,(x-4)∈[-2,0],所以f(x)=f(x-4)=2(x-4)-(x-4)^3
(3)、根据已知条件易知,f(3)=-f(1),f(4)=-f(2),所以,f(1)+f(2)+f(3)+f(4)=0,同理f(5)+f(6)+f(7)+f(8)=0,……,f(2005)+f(2006)+f(2007)+f(2008)=0,所以f(0)+f(1)+f(2+……+f(2011)=f(0)+f(2009)+f(2010)+f(2011)=f(0)+f(1)+f(2)+f(3)=0

收起

设f(x)是定义在R上的奇函数,且对任意实数x恒有f(x+2)=f(x)求f(1) 设f(x)是定义在R上的奇函数,且对任意实数x,恒有f(x+2)=-f(x)求证;f(x)是周期函数为什么用x+2代替x时前面要加负号 设f(x)是定义在R上的奇函数且对任意实数x,恒有f(x+2)=-f(x).当x∈[0,2]时f(x)=2x-x² 求: 设f(X)是定义在R上的奇函数,且当x>0时,f(X)=2的x次方.若对任意的x属于【t,t=1】,不等式f(x+t)大于等 1.设f(x)是在定义域内R上的奇函数,且X 已知f(x)是定义在R上的偶函数且y=f(x+1)是奇函数且对任意0= 设f x 是定义在r上的奇函数,且y= 设f(x)是定义在R上的奇函数,且对任意a,b属于R,当a+b不等于0时,都有f设f(x)是定义在R上的奇函数,且对任意a,b属于R,当a+b不等于0时,都有f(a)+f(b)/(a+b)大于0 (1)若a大于b,试比较f(a) 函数体设f(x)室定义在R上的函数 且对任意实数x,y都有f(x+y)=f(x)+f(y),求证:1、f(x)是奇函 数 2、若当x>0设f(x)室定义在R上的函数 且对任意实数x,y都有f(x+y)=f(x)+f(y),求证:1、f(x)是奇函数 2、若当x>0 f(x)是R上奇函数,且当x≥0时,f(x)=x^2,若对任意的x∈(t,t+2),不等式f(x+t)≥f(x)恒成立,则t取值范围设 f(x)是定义在 R上的奇函数,且当x≥0 时,f(x)=x^2,若对任意的 x∈(t,t +2),不等式f(x+t)≥f(x)恒成立,则实 定义在R上的函数f(x),对任意的x、y∈R,有f(x+y)+f(x-y)=2f(x)f(y),且f(0)不等于0,求证f(x)是奇函数 设f(x)是定义在R上的奇函数,f(1)=2,当x>0时,f(x)是增函数,且对任意的x,y属于R,都有f(x+y)=f(x)+f(y)则函数f(x)在区间[-3,-2]上的最大值是? 设fx是定义在R上的奇函数,且当x大于等于0时,fx=x2.若对任意的x属于【t,t加2】,不等式f[x=t]大于等于设fx是定义在R上的奇函数,且当x大于等于0时,fx=x2.若对任意的x属于【t,t加2】,不等式f[x加t]大于 1.已知f(x)是定义在R上的奇函数,g(x)是定义在R上的偶函数,且f(x)-g(x)=-x^3 -x²+1,则g(x)=_______2.设f(x)是定义在【-1,1】上的奇函数,对任意a、b∈【-1,1】,当a+b≠0时,都有(f(a)+f(b))/(a+b)>0.①若a>b, 已知f(x)是定义在R上的奇函数,且满足1.对任意的x,y属于R,有f(x+y)=f(x)+f(y)2.当x>0时,f(x) 设f(x)是定义在R上的奇函数,切对任意的x∈R都有f(x+1)= -f(x)则下列等式中不成立的是A.f(1)=1 设f(x)是定义在R上的函数.且对任意实数x,y都有f(x+y)=f(x)+f(y),求证(1) f(x)是奇函数(2)若当x>0时,有f(x)>0,则f(x)在R上是增函数 几道函数的数学题函数F(x)是定义在R上的奇函数,且对任意的x∈R都有f(x+6)=f(X)+f(3-x),则f(2010)=?