1、如果1/x+1/y=2,求3x+2xy+3y/2x-3xy+2y的值2、(1+1/2+1/3+1/4)*(1/2+1/3+1/4+1/5)-(1+1/2+1/3+1/4+1/5)*(1/2+1/3+1/4)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/30 23:27:53
1、如果1/x+1/y=2,求3x+2xy+3y/2x-3xy+2y的值2、(1+1/2+1/3+1/4)*(1/2+1/3+1/4+1/5)-(1+1/2+1/3+1/4+1/5)*(1/2+1/3+1/4)
1、如果1/x+1/y=2,求3x+2xy+3y/2x-3xy+2y的值
2、(1+1/2+1/3+1/4)*(1/2+1/3+1/4+1/5)-(1+1/2+1/3+1/4+1/5)*(1/2+1/3+1/4)
1、如果1/x+1/y=2,求3x+2xy+3y/2x-3xy+2y的值2、(1+1/2+1/3+1/4)*(1/2+1/3+1/4+1/5)-(1+1/2+1/3+1/4+1/5)*(1/2+1/3+1/4)
1题:1/x+1/y=2
∴(x+y)/xy=2
∴x+y=2xy
∴原式=[3(x+y)+2xy]/[2(x+y)-3xy]
=(8xy)/(xy)=8
2题:原式=、(1+1/2+1/3+1/4)*(1/2+1/3+1/4+1/5)-(1+1/2+1/3+1/4+1/5)*(1+1/2+1/3+1/4)+(1+1/2+1/3+1/4+1/5)
=(1+1/2+1/3+1/4)*[(1/2+1/3+1/4+1/5)-(1+1/2+1/3+1/4+1/5)+(1+1/2+1/3+1/4+1/5)
=-(1+1/2+1/3+1/4)+(1+1/2+1/3+1/4+1/5)
=1/5
1/x +1/y=2 x+y=2xy
3x+3y+x/2+y/2)/(x+y)*3/2
=3.5/1.5=7/3
1题. 1/x+1/y=2
y/xy+x/xy=2
(x+y)/xy=2
x+y=2xy
3x+2xy+3y/2x-3xy+2y
3(x+y)+2xy/2(x+y)-3xy
3*2xy+2xy/2*2xy-3xy
8xy/xy=8
2题.
设1/2+1/3+1/4为x
原题为(1+x)(x+1/5)-(1+x+1/5)*x
(1+x)(1/5+x)-(6/5+x)*x
=1/5
1. 1/x+1/y=2
y/xy+x/xy=2
(x+y)/xy=2
x+y=2xy
3x+2xy+3y/2x-3xy+2y
3(x+y)+2xy/2(x+y)-3xy
3*2xy+2xy/2*2xy-3xy
8xy/xy=8
3x+2xy+3y/2x-3xy+2y
3(x+y)+2xy/2(x+y)-3xy
3*2xy+2xy/2*2xy-3xy
8xy/xy=8
1/x +1/y=2得:x+y=2xy
原式=(3x+3y+x/2+y/2)/(x+y)*3/2
=3.5/1.5=7/3