数列{an}是正项等比数列,她的前n项和为80,其中数值最大的项为54,前2n项和为6560,求它的前100项的和
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/27 05:35:54
数列{an}是正项等比数列,她的前n项和为80,其中数值最大的项为54,前2n项和为6560,求它的前100项的和
数列{an}是正项等比数列,她的前n项和为80,其中数值最大的项为54,前2n项和为6560,求它的前100项的和
数列{an}是正项等比数列,她的前n项和为80,其中数值最大的项为54,前2n项和为6560,求它的前100项的和
设等比数列首项是a1,等比为q,则有:
Sn=a1(1-q^n)/(1-q) =80
S2n/Sn=[a1(1-q^2n)/(1-q)]/[a1(1-q^n)/(1-q)]=1+q^n=6560/80=82
an=a1*q^(n-1)=54
解得 a1=2 q=3 n=4
因此前100项的和是:
S100=a1*(1-q^100)/(1-q) =2*(1-3^100)/(1-3)=3^100-1
设等比数列首项是a1,等比为q,则有:
Sn=a1(1-q^n)/(1-q) =80
S2n/Sn=[a1(1-q^2n)/(1-q)]/[a1(1-q^n)/(1-q)]=1+q^n=6560/80=82
an=a1*q^(n-1)=54
解得 a1=2 q=3 n=4
因此前100项的和是:
S100=a1*(1-q^100)/(1-q) =2*(1-3^100)/(1-3)=3^100-1
设等比数列首项是a1,等比为q,则有:
Sn=a1(1-q^n)/(1-q) =80
S2n/Sn=[a1(1-q^2n)/(1-q)]/[a1(1-q^n)/(1-q)]=1+q^n=6560/80=82
an=a1*q^(n-1)=54
解得 a1=2 q=3 n=4
因此前100项的和是:
S100=a1*(1-q^100)/(1-q) =2*(1-3^100)/(1-3)=3^100-1