∫(arctan√x)/[√x*(1+x)]dx
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 19:32:37
xQN@YfK>@40&]H`L"jH41ZRI! v1s9gܱ;ore#Z.EZ/J>qcҗ;{U]gi3ymFr}fA7ۼ͚!7g,8={qڍsaA]d!Z?T)t:j-ɷαxEj2.No(Di2`UmؒI9SXK`7+
\y `>$ioy'a5| y3dp
v41QֈnjDt?|6_/'}5 Wd
R"fQ-5)st
∫(arctan√x)/[√x*(1+x)]dx
∫(arctan√x)/[√x*(1+x)]dx
∫(arctan√x)/[√x*(1+x)]dx
一步一步微分、积分并用,就可以还原出原函数,也就是一些教师所说的“还原法”,或“凑微分法”:
∫(arctan√x)/[√x×(1+x)]dx
=2∫(arctan√x)/[1+x]d√x
=2∫(arctan√x)/[1+(√x)²]d√x
=2∫(arctan√x)d(arctan√x)
= arctan²√x + C
d(artan√x) = 1/(1+x) d(√x) = 1/2√x*(1+x) dx;
∫(arctan√x)/[√x*(1+x)]dx
= ∫ 2(arctan√x) d(arctan√x)
= (arctan√x)^2 + C .
证明:令t=√x =>x=t^2 dx=2*t*dt
∫(arctan√x)/[√x*(1+x)]dx=∫(arctan(t)/(t*(1+t^2))*2*t*dt
=2∫(arctan(t)/(1+t^2)*dt
=2∫arctan(t)*d(arctan(t))
=arctan^2(t)+C
证毕!
∫arctan√x dx
∫(arctan√x)/[√x*(1+x)]dx
∫arctan(1+√x)dx
∫(arctan√x)/√x dx
求∫arctan(1+√x)d(x)
arctan√(1-x)/(1+x) 积分arctan√(1-x)/(1+x)的不定 积分
S(arctan√x)/(√x(1+x))dx
∫arctan[(x-1)/(x+1)]dxrt
∫arctan√(x^2-1)dx求不定积分
arctan(1/x)求导
y=(x+1)arctan√x 求dy
求不定积分∫[(arctan√x)/(√x(1+x))]dx
∫dx/(√(x)(1+x))=2arctan(√(x))+c
反三角函数问题请问arctan(√2x+1)+arctan(√2x-1)是否等于arctan√2/2(x-1/x)呢?怎么证?
求 ∫[arctan√x/√(1+x)]dx 的不定积分.√表示根号,
计算不定积分 ∫arctan√x /√x.1/1+xdx
y=arctan√x求导
计算:arctan(1-x)+arctan(1+x)的值