∫(arctan√x)/[√x*(1+x)]dx

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 19:32:37
∫(arctan√x)/[√x*(1+x)]dx
xQN@YfK>@40&]H`L"jH41ZRI ! v1s9gܱ;ore#Z.EZ/J>qcҗ;{U ]gi3ymFr}fA7ۼ͚!7g,8={qڍsaA]d!Z?T)t:j-ɷαxEj2.No(Di2`UmؒI9SXK `7+ \y`>$ioy'a5| y3dp v41QֈnjDt?|6_/'}5 Wd R"fQ-5)st

∫(arctan√x)/[√x*(1+x)]dx
∫(arctan√x)/[√x*(1+x)]dx

∫(arctan√x)/[√x*(1+x)]dx
一步一步微分、积分并用,就可以还原出原函数,也就是一些教师所说的“还原法”,或“凑微分法”:
∫(arctan√x)/[√x×(1+x)]dx
=2∫(arctan√x)/[1+x]d√x
=2∫(arctan√x)/[1+(√x)²]d√x
=2∫(arctan√x)d(arctan√x)
= arctan²√x + C

d(artan√x) = 1/(1+x) d(√x) = 1/2√x*(1+x) dx;
∫(arctan√x)/[√x*(1+x)]dx
= ∫ 2(arctan√x) d(arctan√x)
= (arctan√x)^2 + C .

证明:令t=√x =>x=t^2 dx=2*t*dt
∫(arctan√x)/[√x*(1+x)]dx=∫(arctan(t)/(t*(1+t^2))*2*t*dt
=2∫(arctan(t)/(1+t^2)*dt
=2∫arctan(t)*d(arctan(t))
=arctan^2(t)+C
证毕!