计算∫[0,ln2]√(e^x-1)dx

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 22:38:00
计算∫[0,ln2]√(e^x-1)dx
x){nuu63}1K#5BP3&H;̀ˮPdmӎ`mckx)F):@:ڨT_. ZaklR[ [`vj 4 Mm}7~[ c@f.C]CtI#RĢļR;6Ղ-5*?ߠo H$ف. >

计算∫[0,ln2]√(e^x-1)dx
计算∫[0,ln2]√(e^x-1)dx

计算∫[0,ln2]√(e^x-1)dx
计算[0,ln2]∫√(e^x-1)dx
令√(e^x-1)=u,则e^x-1=u²,e^x=u²+1,e^xdx=2udu,dx=[2u/(u²+1)]du,
x=0时u=0,x=ln2时u=e^(ln2)-1=2-1=1
故原式=[0,1]2∫[u²/(u²+1)]du=[0,1]2∫[1-1/(u²+1)]du=2(u-arctanu)︱[0,1]
=2[1-π/4]=2-π/2.