设方阵A满足方程aA^2+bA+cE=0,证明A为可逆矩阵,并求A^-1(a,b,c为常数,c≠0)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/29 13:44:37
设方阵A满足方程aA^2+bA+cE=0,证明A为可逆矩阵,并求A^-1(a,b,c为常数,c≠0)
x){n߳i;_l69Wt':i'9j'XlF|Jz;=k~OGNN2HŎϦnI~ԹN"}Z[_`gC[=@hΆ'*8j$:j'j**&D+h'kTո(Q8MɎ) 'U/.H̳

设方阵A满足方程aA^2+bA+cE=0,证明A为可逆矩阵,并求A^-1(a,b,c为常数,c≠0)
设方阵A满足方程aA^2+bA+cE=0,证明A为可逆矩阵,并求A^-1(a,b,c为常数,c≠0)

设方阵A满足方程aA^2+bA+cE=0,证明A为可逆矩阵,并求A^-1(a,b,c为常数,c≠0)
证明:因为 aA^2+bA+cE=0
所以 A(aA+bE) = -cE
所以 A[ (-1/c)(aA+bE) ] = E.
所以 A 可逆,且 A^-1 = (-1/c)(aA+bE)