设f(x)在【0,1】上连续且∫(0,1)f(x)dx=A,证明∫(0,1)dx∫(x,1)f(x)f(y)dy=A∧2/2,谢谢!

来源:学生作业帮助网 编辑:作业帮 时间:2024/07/08 13:42:45
设f(x)在【0,1】上连续且∫(0,1)f(x)dx=A,证明∫(0,1)dx∫(x,1)f(x)f(y)dy=A∧2/2,谢谢!
x){n_=t>q zkcPT3MB3Qg3`) VTAFfJ㣎FF:/6,"E"}zY_`gCoUBMqR:O;fihijM**RdS܀R H2ю Cc2 aG qFF G 1T

设f(x)在【0,1】上连续且∫(0,1)f(x)dx=A,证明∫(0,1)dx∫(x,1)f(x)f(y)dy=A∧2/2,谢谢!
设f(x)在【0,1】上连续且∫(0,1)f(x)dx=A,证明∫(0,1)dx∫(x,1)f(x)f(y)dy=A∧2/2,谢谢!

设f(x)在【0,1】上连续且∫(0,1)f(x)dx=A,证明∫(0,1)dx∫(x,1)f(x)f(y)dy=A∧2/2,谢谢!
设∫f(x)dx=F(x),则F(0)=0,F(1)=A,
∫[∫f(x)f(y)dy]dx
=∫f(x)[∫dF(y)] dx
=∫[A-F(x)]dF(x )
=A∫f(x)dx -(A^2)/2
=(A^2)/2