设A为n阶方阵,且A^2=4A,令B=A^2-5A+6E,证明:B为可逆矩阵.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 00:19:48
设A为n阶方阵,且A^2=4A,令B=A^2-5A+6E,证明:B为可逆矩阵.
x){n^lΗ3<11Q%N@΋f3 i mjѳI*ҧIv6tR0V7qEA>"o64r>lx{ M Gm#WM[4SDRF 1W_

设A为n阶方阵,且A^2=4A,令B=A^2-5A+6E,证明:B为可逆矩阵.
设A为n阶方阵,且A^2=4A,令B=A^2-5A+6E,证明:B为可逆矩阵.

设A为n阶方阵,且A^2=4A,令B=A^2-5A+6E,证明:B为可逆矩阵.
B=A^2-5A+6E
= A^2-4A-A+6E
= -A+6E
再由 A^2-4A=0
得 A(A-6E)+2(A-6E)+12E=0
所以 (-A+6E)(A+2E)=12E
所以 B^-1 = (A+2E)/12