设A,B都是n阶的正交矩阵,证明A的伴随矩阵A*也是正交矩阵

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/28 12:56:56
设A,B都是n阶的正交矩阵,证明A的伴随矩阵A*也是正交矩阵
x){nf{9cY-.~k+_تb}}@'{vzs>PR"}j_`gCu9:ƅc&q35ԁql t !l|g^44Aӷ@Zk4Xn#L.V aM DOMz';vZqAb(ٙ

设A,B都是n阶的正交矩阵,证明A的伴随矩阵A*也是正交矩阵
设A,B都是n阶的正交矩阵,证明A的伴随矩阵A*也是正交矩阵

设A,B都是n阶的正交矩阵,证明A的伴随矩阵A*也是正交矩阵
AA^T=A^TA=E,A^(-1)=A^T
|A|^2=1,
|A|=1.-1
A*=|A|A^(-1)=A^T或者-A^T
A*=A^T时,
A*(A*)^T=A^T(A^T)^T=A^TA=E
A*=-A^T时,
A*(A*)^T=(-A^T)(-A*)^T=(-A^T)(-A)=A^TA=E
所以得证A*也为正交矩阵