设A,B为n阶矩阵,如果AB=0,那么秩(A)+秩(B)≤n由已知AB=0,所以B的列向量都是AX=0的解,而AX=0的基础解系含n-r(A)个向量,所以r(B) ≤ n - r(A).(请问老师r(B) 为何≤ n - r(A)?)所以 r(A) + r(B) ≤ n.(请问老

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/24 07:18:29
设A,B为n阶矩阵,如果AB=0,那么秩(A)+秩(B)≤n由已知AB=0,所以B的列向量都是AX=0的解,而AX=0的基础解系含n-r(A)个向量,所以r(B) ≤ n - r(A).(请问老师r(B) 为何≤ n - r(A)?)所以 r(A) + r(B) ≤ n.(请问老
x){nӓ^|ʗ3<]lG'[Mx|6r|Թ$Ooz>)XѳΆ':=c _llz[u^4@yOz(|V~cD#԰"E @t@ x~^44>VtSi3fbTOZi`Ha ,Iٌ4‹mϛvZ)^ q-O׃;=ߵY W<_KGiL6yvS

设A,B为n阶矩阵,如果AB=0,那么秩(A)+秩(B)≤n由已知AB=0,所以B的列向量都是AX=0的解,而AX=0的基础解系含n-r(A)个向量,所以r(B) ≤ n - r(A).(请问老师r(B) 为何≤ n - r(A)?)所以 r(A) + r(B) ≤ n.(请问老
设A,B为n阶矩阵,如果AB=0,那么秩(A)+秩(B)≤n
由已知AB=0,所以B的列向量都是AX=0的解,而AX=0的基础解系含n-r(A)个向量,
所以r(B) ≤ n - r(A).(请问老师r(B) 为何≤ n - r(A)?)
所以 r(A) + r(B) ≤ n.
(请问老师r(B) 为何≤ n - r(A)?)

设A,B为n阶矩阵,如果AB=0,那么秩(A)+秩(B)≤n由已知AB=0,所以B的列向量都是AX=0的解,而AX=0的基础解系含n-r(A)个向量,所以r(B) ≤ n - r(A).(请问老师r(B) 为何≤ n - r(A)?)所以 r(A) + r(B) ≤ n.(请问老
知识点: 若向量组A可由向量组B线性表示, 则 r(A)