设A为n阶方阵,detA=1/3,A*为A的伴随矩阵,求det[A*+(1/4A)逆]=?

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/24 16:02:45
设A为n阶方阵,detA=1/3,A*为A的伴随矩阵,求det[A*+(1/4A)逆]=?
xJA_e5aY qA$`egB+ AHBLB_xo;N.Er٪zg-)T9 xߗE=<<:z3')z<GE GI_2\Xk򀹱hHJ3q4 S)򦕪[%Q9pI#T 8ϳx&|_JØ zۗ_g 'asbm&DC@K

设A为n阶方阵,detA=1/3,A*为A的伴随矩阵,求det[A*+(1/4A)逆]=?
设A为n阶方阵,detA=1/3,A*为A的伴随矩阵,求det[A*+(1/4A)逆]=?

设A为n阶方阵,detA=1/3,A*为A的伴随矩阵,求det[A*+(1/4A)逆]=?
A^(-1)=A*/|A |=3A*
A*=|A|A^(-1)=1/3 A^(-1)
|A*+(1/4A)^(-1)|
=|A*+4A^(-1)||
=|A*+12A*|
=|13A*|
=|13/3 A^(-1)|
=(13/3)^n×|A^(-1)|
=(13/3)^n×1/|A|
=3(13/3)^n

A*=|A|A^-1 = (1/3)A^-1
(1/4A)^-1 = 4A^(-1)
所以det[A*+(1/4A)逆]
=det((13/3)A^-1)=(13/3)^n * det(A^-1)
=(13/3)^n / (1/3)
= 3 * (13/3)^n