设n阶矩阵A和B的特征多项式相等,则()a.A与B相似 b.A^2与B^2相似c,|A|=|B| d,都错

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/26 11:34:50
设n阶矩阵A和B的特征多项式相等,则()a.A与B相似 b.A^2与B^2相似c,|A|=|B| d,都错
xj@_p&"]KhYGI ?(.4ڒ1O373zv!{Όj54{foF#']`5@N 3<T$}eyfJ2WWN

设n阶矩阵A和B的特征多项式相等,则()a.A与B相似 b.A^2与B^2相似c,|A|=|B| d,都错
设n阶矩阵A和B的特征多项式相等,则()
a.A与B相似 b.A^2与B^2相似
c,|A|=|B| d,都错

设n阶矩阵A和B的特征多项式相等,则()a.A与B相似 b.A^2与B^2相似c,|A|=|B| d,都错
c是对的,因为特征多项式相等,说明有相同的特征值,而矩阵的行列式值就是特征值的乘积.
A要求有相同的不变因子,
B就很离谱了.

设n阶矩阵A和B的特征多项式相等,则()a.A与B相似 b.A^2与B^2相似c,|A|=|B| d,都错 设n阶矩阵A和B的特征多项式相等,则()a.A与B相似 b.A^2与B^2相似c,|A|=|B| d,都错 设A,B都是实数域R上的n×n矩阵,证明:AB,BA的特征多项式相等 设A,B均为n阶实对称矩阵,证明:A与B相似 A,B有相同的特征多项式 矩阵相似问题n阶矩阵A和B有相同的特征多项式和最小多项式,问A与B是否相似?是则给出证明,不是则举出反例.感觉不一定相似,就是举不出反例. 如果A和B都是n阶是对称矩阵,并且有相同的特征多项式,证明AB相似. 设n阶矩阵A的n个特征根互异,证明:凡具有AB=BA的矩阵B,必与对角矩阵相似,且这样的B是A的多项式piease证明! 对于n阶复矩阵B,若B最小多项式和特征多项式相等,证明:存在向量a,使得a,Ba,……B^(n-1)a线性无关,呵呵 设A,B是N阶方阵,f(x)是B的特征多项式,证明f(A)是可逆矩阵的充分必要条件是A与B没有相同的特征值. 设A,B是N阶方阵,f(x)是B的特征多项式,证明f(A)是可逆矩阵的充分必要条件是A于B没有相同的特征值. 1.N阶矩阵A的特征方程有重根,那么A能否对角化?2.如何证明相似矩阵A和B有相同的特征值和特征多项式? A、B都是n阶Hermite 矩阵,证明:A与B相似的充要条件是它们的特征多项式相同 a,b均为n阶方阵,b为幂零矩阵a可逆矩阵,且ab可交换,证明a与a+b有相同的特征多项式 相似矩阵充分条件(见一道选择题)如果____________ ,则n阶矩阵A与矩阵B相似.A./A/ =/B/ B.r(A)=r(B)C.A与B有相同的特征值,且n个特征值各不相同 D.A与B有相同的特征多项式 求证一道线性代数题A和B是n*n矩阵 1)若A和B是nonsingualr 求证AB的特征多项式等于BA的特征多项式2)若A和B 是singualr 求证AB的特征多项式等于BA的特征多项式 设n阶矩阵A的n个特征根互异,证明:凡具有AB=BA的矩阵B必与对角矩阵相似. 设C是nxm矩阵,A是n阶方阵,B是m阶方阵,AC=CBR(C)=m(此题有3问,不知道此条件对于此问是否多余?)证明:若n>m,则det(xEm-B)整除det(xEn-A)注:det(xEn-A)就是A 的特征多项式,我已证明B的特征根必为A的特征根, 高等代数/线性代数:n阶矩阵A、B可换,B幂零,证A与A+B有相同的特征多项式.