线性代数证明:已知A是n阶正交矩阵,若ⅠAⅠ=1,证明当n为奇数时,ⅠE-AⅠ=0

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 14:30:26
线性代数证明:已知A是n阶正交矩阵,若ⅠAⅠ=1,证明当n为奇数时,ⅠE-AⅠ=0
x){kOv/~6uËf3M/u|6c}۞]dגWUEG :-ON{cӥ@SMߦvՅ*2I*ҧ=v6Q _c &OqTua W&u5j4kl5t 5 tγΆ'B n{c:/p|>5/.H̳B

线性代数证明:已知A是n阶正交矩阵,若ⅠAⅠ=1,证明当n为奇数时,ⅠE-AⅠ=0
线性代数证明:已知A是n阶正交矩阵,若ⅠAⅠ=1,证明当n为奇数时,ⅠE-AⅠ=0

线性代数证明:已知A是n阶正交矩阵,若ⅠAⅠ=1,证明当n为奇数时,ⅠE-AⅠ=0
|E-A|=|E-A|×|A'|=|A'-AA'|=|A'-E|=|A-E|=|-(E-A)|=(-1)^n|E-A|=-|E-A|,所以|E-A|=0.其中A'代表A的转置