如图,圆0既是正△ABC的外接圆,又是正△DEF的内切圆,则内、外两个正三角形的相似比是

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/30 14:08:30
如图,圆0既是正△ABC的外接圆,又是正△DEF的内切圆,则内、外两个正三角形的相似比是
xT[oG+Q*dewfgvg/ԗFPT8$UU(KR*ԗRvB? ).{3Gߙlin2vOҍϧ=<·ͻtujV{U:3;UҰV{7Оϒ7KhlI~fnLE,~E)ē;27YXX(]v1U( H՗SruļUwwK8d딋7nP Q]|F0c3q ER "C5W`ž\{80B.oyHTS\D5vFX{zL.|pjfL՘ϵύ%h͂ pdTJ;>S bT4 Z *ud~jryK5b GFs*#a<c+ ` 9-N>

如图,圆0既是正△ABC的外接圆,又是正△DEF的内切圆,则内、外两个正三角形的相似比是
如图,圆0既是正△ABC的外接圆,又是正△DEF的内切圆,则内、外两个正三角形的相似比是

如图,圆0既是正△ABC的外接圆,又是正△DEF的内切圆,则内、外两个正三角形的相似比是
是1:2
设圆的半径为R,则外正三角形的高为3R,内三角形的高为3/2R
(3/2):3=1:2

让里面的△ABC稍微转一下,使得A,B,C三点刚好都转到圆与外面的三角形的切点上,这样一看就非常明显了:AC=½EF,所以内、外两个正三角形的相似比是1:2

设圆半径为R,将两三角形旋转至BC平行于EF,连接OC,OF,同时过O作垂线垂直于BC,EF。有COS30=根号3/2 SIN30=1/2,可得BC=根号3R,EF=2根号3R,比值为1/2

如图,圆0既是正△ABC的外接圆,又是正△DEF的内切圆,则内、外两个正三角形的相似比是 如图,正△ABC外接圆的半径R,求正△ABC的边长,边心距,周长和面积.急. 如图,已知正△ABC外接圆的半径为R,求正△ABC的中心角,边长,周长,面积 如图,正三角形abc的外接圆半径是m,内有正六边形defghr,求正六边形的周长 如图,正△ABC的边长为2,求其内切圆半径r和外接圆半径R 如图,已知正六边形ABCDEF,其外接圆的半径是4,求正六边形的周长和面积 已知△ABC的边长为a.计算:正△ABC的外切圆与内切圆组成的圆环的面积;(2)推广:将本题条件中的“正三角形”改为“正六边形”,那么正六边形的外接圆与内切圆组成圆环的面积是 ;如 如图,圆o是三角形ABC的外接圆 在正三角形,正方形,正五边形,正六边形,正八边形中,既是中心对称图形又是轴对称图形的是—— 若正△abc的边长为a,则它的外接圆的面积为 求正△ABC的内切圆与外接圆的面积之比 如图,已知圆O于正六边形ABCDEF的各边都相切.求证点O也是正六边形ABCDEF的外接圆的圆心图 正文中引用萨特的话,为什么他说这个记忆既是 沉重 的又是 美丽 如图,已知正六边形的外接圆半径为4,求这个正六边形的中心角、边长、周长、面积 正四面体外接圆的半径 1.正多边形都有内切圆和外接圆.且这两个原是同心圆2..各边相等的圆外切多边形是正多边形.3.各角相等的圆内接多边形是正多边形4.正多边形既是轴对称图形又是中心对称图形.5.正n边行的中 如图,是两个相同的正六边形,其中一个正六边形的顶点在另一个正六边形外接圆圆心O处.求重叠部分面积与阴影部分面积之比 如图 把正△ABC的外接圆对折,使点A与劣弧BC的中点M重合,折痕分别交AB,AC于D,E,若BC=5,求DE