设函数y=y(x)由方程cos(x+y)+y=1确定,求dy/dx

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/24 09:01:23
设函数y=y(x)由方程cos(x+y)+y=1确定,求dy/dx
x){nϦnԨ|>ei;N/֨ЮԮ5|putmlJOI*'K~ 65uO;ڞm}~OoqfF=ݕ Q&M`cPhCXTՏ:uzF 1K0GD"MmC[¶`AP&g\ f%R0!6}tﳖg sy1i'z,

设函数y=y(x)由方程cos(x+y)+y=1确定,求dy/dx
设函数y=y(x)由方程cos(x+y)+y=1确定,求dy/dx

设函数y=y(x)由方程cos(x+y)+y=1确定,求dy/dx
由隐函数微分法可得:-sin(x+y)(1+y′ )+y′ =0
-sin(x+y)+[1-sin(x+y)]y′ =0
∴y′ =sin(x+y)/[1-sin(x+y)].

-sin(x+y)(1+y`)+1=0
sin(x+y)(1+y`)=1
1+y`=1/sin(x+y)=csc(x+y)
y`=csc(x+y)-1

不好意思,我初二