计算曲面积分∫(y+2xy)dx+(x^2+2x+y^2)dy,其中L是由A(4,0)沿上半圆周y=√(4x-x^2)到O(0,0)的半圆周

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 16:25:09
计算曲面积分∫(y+2xy)dx+(x^2+2x+y^2)dy,其中L是由A(4,0)沿上半圆周y=√(4x-x^2)到O(0,0)的半圆周
x){nuӟr?h{ԱZRۨR3B["֮3LyںɎ>f>eMztNӉ+*mu0j|ڱ{:jI*( lg>ٱi'XhJ%-@wn= l @

计算曲面积分∫(y+2xy)dx+(x^2+2x+y^2)dy,其中L是由A(4,0)沿上半圆周y=√(4x-x^2)到O(0,0)的半圆周
计算曲面积分∫(y+2xy)dx+(x^2+2x+y^2)dy,其中L是由A(4,0)沿上半圆周y=√(4x-x^2)到O(0,0)的半圆周

计算曲面积分∫(y+2xy)dx+(x^2+2x+y^2)dy,其中L是由A(4,0)沿上半圆周y=√(4x-x^2)到O(0,0)的半圆周
这个可以补上y=0处的线段L1:0

计算曲面积分∫(y+2xy)dx+(x^2+2x+y^2)dy,其中L是由A(4,0)沿上半圆周y=√(4x-x^2)到O(0,0)的半圆周 证明曲线积分∫(xy^2-y^3)dx+(x^2y-3xy^2)dy与路径无关,并计算积分 大学第二型曲面积分问题计算空间第二类型曲面积分∫(封闭L)(y^2-z^2)dx+(z^2-x^2)dy+(x^2-y^2)dz 其中L为八分之一球面x^2+y^2+z^2=1,x>=0,y>=0,z>=0的边界线ABCA,从球心看L,L为逆时针方向. 计算积分∫sinx*x^2 dx 计算积分 ∫ x^2 arctan4x dx 计算曲线积分∮(x^3+xy)dx+(x^2+y^2)dy其中L是区域0 空间曲面为球面x^2+y^2+z^2=R^2,计算对面积的曲面积分∫∫(x+y)^2dS 计算曲面积分I=∫∫D(x+|y|)dS,其中曲面D:|x|+|y|+|z|=1 关于曲面积分计算曲面积分∫∫(y^2+2z)dydz+(3z^2-x)dzdx+(x^2-y)dxdy,其中积分区域为锥面z=√x^2+y^2介于0 计算曲面积分闭合曲面I=ff(x^2+y^2)dS.其中曲面为球面x^2+y^2+z^2=2(x+y+z) 计算曲面积分闭合曲面I=ff(x^2+y^2)dS.其中曲面为球面x^2+y^2+z^2=2(x+y+z) 计算对坐标的曲线积分∫(x^2-2xy)dx+(y^2-2xy)dy,其中C为抛物线y=x^2上对应于x=-1到x=1的一段弧, 高数曲面积分.急计算曲面积分∫ONA(2xsiny-y)dx+(x^2cosy-1)dy,其中ONA是连接点,O(0,0)和A(2,π/2)的任何路径,但与直线OA围成的图形ONAO有定面积π 求二次积分∫dx∫ xy/√(1+y^3)dy x[0,1] y[x^2,1] 计算曲面积分∫∫(z^2+x)dydz-zdxdy其中积分面为z=1/2(x^2+y^2)介于z=0,和z=2之间部分下侧不要用两类曲面积分间关系转化为第一类曲面积分做,就直接按第二类曲面积分算下, 计算三重积分∫∫∫zdv,其中Ω是有曲面积分z=√(2-x^2-y^2)和z=x^2+y^2 计算第一类曲面积分∫∫zdS,其中曲面为圆锥面z=2-根号(x平方+y平方)位于xoy面上方部分 计算曲线积分∫L(2xy+3sinx)dx+(x2-ey)dy,其中L为摆线 x=t-sint Y=1-cost 从点O(0,0)到A(π,2)的一段计算曲线积分∫L(2xy+3sinx)dx+(x2-ey)dy,其中L为摆线 x=t-sint Y