f(x)在[0,1]连续,f(x)=3x-√(1-x^2)[∫f^2(x)]dx,求f(x)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/24 22:43:14
x)KӨ|:gEa^5}1KP"H3Q8#xlJγM %6IEh/~A"g<ݹٴ/
=rƶ<鲦g ʬOv/ɶZ
2"6(c&!`*m㌴5,u&PR,M%6Bt") T b"cQok
}6u mF@A]lmK[uL37l{:醍O?ٽO;6@" 1O
f(x)在[0,1]连续,f(x)=3x-√(1-x^2)[∫f^2(x)]dx,求f(x)
f(x)在[0,1]连续,f(x)=3x-√(1-x^2)[∫f^2(x)]dx,求f(x)
f(x)在[0,1]连续,f(x)=3x-√(1-x^2)[∫f^2(x)]dx,求f(x)
f^2(x)是f(x)的平方还是二阶导数?
如果是平方:
令k=∫[f(x)]^2dx
则f(x)=3x-k√(1-x^2)
[f(x)]^2=k^2+(9-k^2)x^2-6kx√(1-x^2)
k=∫[f(x)]^2dx
=∫[k^2+(9-k^2)x^2-6kx√(1-x^2)]dx
=k^2+(9-k^2)∫x^2dx-6k∫x√(1-x^2)dx
=k^2+(9-k^2)/3-2k
整理2k^2-9k+9=0
k=3或3/2
然后就可以得到f(x)