求证:1+2sinacosa/sin2a-cos2a=tana+1/tan-1
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/29 12:44:22
xPJ1Oa Crt!z.Cib=UޤkfI,
$/ޛVDnސ~d(="ܣDeDL+"^i-#Me>N۽=M>q)$aTT[e
求证:1+2sinacosa/sin2a-cos2a=tana+1/tan-1
求证:1+2sinacosa/sin2a-cos2a=tana+1/tan-1
求证:1+2sinacosa/sin2a-cos2a=tana+1/tan-1
左边(sin²a+cos²a+2sinacosa)/(sin²a-cos²a)
=(sina+cosa)²/(sina+cosa)(sina-cosa)
=(sina+cosa)/(sina-cosa)
上下除以cosa
sina/cosa=tana
所以左边=(tana+1)/(tana-1)=右边
命题得证
(1+2sinacosa)/[(sina)^2-(cosa)^2]
=[(sina)^2+(cosa)^2+2sinacosa]/[(sina)^2-(cosa)^2]
=(sina+cosa)^2/(sina-cosa)(sina+cosa)
=(sina+cosa)/(sina-cosa)(分子分母同时除以cosa)
=(sina/cosa+cosa/cosa)/(sina/cosa-cosa/cosa)
=(tana+1)/(tan-1 )