问一题高中数学三角函数题,谢谢,详解,谢谢求y=2sinx+(cosx)^2+cos2x+1 的最值.谢谢

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/29 10:03:19
问一题高中数学三角函数题,谢谢,详解,谢谢求y=2sinx+(cosx)^2+cos2x+1 的最值.谢谢
x){9}ݓ /xzƓkMt';:_,}/ yaXP޳MFřyqF@ڨBPgs6уI*'&n/p¤ u5@4H Uk 7Xij-y1QGGa,X ⍧=Ӟuq H TӽKlu MlN'n5K#d,$AC̩Հx:j{z yv.

问一题高中数学三角函数题,谢谢,详解,谢谢求y=2sinx+(cosx)^2+cos2x+1 的最值.谢谢
问一题高中数学三角函数题,谢谢,详解,谢谢
求y=2sinx+(cosx)^2+cos2x+1 的最值.谢谢

问一题高中数学三角函数题,谢谢,详解,谢谢求y=2sinx+(cosx)^2+cos2x+1 的最值.谢谢
y=2sinx+(cosx)^2+cos2x+1
=y=2sinx+1-(sinx)^2+1-2(sinx)^2+1
=-3(sinx)^2+2sinx+3
设sinx=t,则∈[-1,1]
函数化为
y=-3t^2+2t+3
当t=-1时有最小值-2,当t=1/3时有最大值10/3

y=(sinx+1)^2,最大值4,最小值0