已知数列an的通项公式an=(-1)^(n-1) *(5n-1),求其前n项和Sn

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 00:52:49
已知数列an的通项公式an=(-1)^(n-1) *(5n-1),求其前n项和Sn
xVn0}\B&mI,4.J6VU5U4O.&[+^ad87v3 %9BHn%w6VgaH-ac 9)w]%>i0%7WqKr`@ .#bPŬ)sqEF5Sa/l]K+sȜ׵uM'R,RB(J24~nRR$L*pidd8 MUUk^kXuU75r{V0L~ rKh(GlΜv&.*qCCTW0oH骖^[_Ol ,9,j^Q0q F2ed!V%\ O)u1΃)k {MZ97gN3|.IYu+t;W}8Qc`Agf6Z.I8R==J%ؔm7ҡ5~t;H:rQޓ0P去tcz,4#}%1sH&o ^*މd2˖錯c_D` <%!=fDq{ dAѿ8w=}{J? ?*?{ r -N 6O{qBI$iȱdxP

已知数列an的通项公式an=(-1)^(n-1) *(5n-1),求其前n项和Sn
已知数列an的通项公式an=(-1)^(n-1) *(5n-1),求其前n项和Sn

已知数列an的通项公式an=(-1)^(n-1) *(5n-1),求其前n项和Sn
an=(-1)^(n-1) *5n-(-1)^(n-1)
Sn=[(-1)^0 *5-(-1)^0]+[(-1)^1 *5*2-(-1)^1]+[(-1)^2 *5*3-(-1)^2]+……+[(-1)^(n-3) *5(n-2)-(-1)^(n-3)]+[(-1)^(n-2) *5(n-1)-(-1)^(n-2)]+[(-1)^(n-1) *5n-(-1)^(n-1)]
=[(-1)^0 *5+(-1)^1 *5*2+(-1)^2 *5*3+……+(-1)^(n-3) *5(n-2)+(-1)^(n-2) *5(n-1)+(-1)^(n-1) *5n]-[(-1)^0+(-1)^1+(-1)^2+……+(-1)^(n-3)+(-1)^(n-2)+(-1)^(n-1)]
=5[(-1)^0+(-1)^1 *2+(-1)^2 *3+……+(-1)^(n-3) *(n-2)+(-1)^(n-2) *(n-1)+(-1)^(n-1) *n]-[1-(-1)^n]/2
Sn=5[(-1)^0+(-1)^1 *2+(-1)^2 *3+……+(-1)^(n-3) *(n-2)+(-1)^(n-2) *(n-1)+(-1)^(n-1) *n]-[1-(-1)^n]/2
{Sn+[1-(-1)^n]/2}/5=(-1)^0+(-1)^1 *2+(-1)^2 *3+……+(-1)^(n-3) *(n-2)+(-1)^(n-2) *(n-1)+(-1)^(n-1) *n
两边×(-1):
(-1){Sn+[1-(-1)^n]/2}/5=(-1)^1+(-1)^2 *2+(-1)^3 *3+……+(-1)^(n-2) *(n-2)+(-1)^(n-1) *(n-1)+(-1)^n *n
相减:
2{Sn+[1-(-1)^n]/2}/5=(-1)^0+(-1)^1+(-1)^2+……+(-1)^(n-3) +(-1)^(n-2) +(-1)^(n-1)-(-1)^n *n
=[1-(-1)^n]/2-n(-1)^n
2{Sn+[1-(-1)^n]/2}/5=[1-(-1)^n]/2-n(-1)^n
Sn+[1-(-1)^n]/2=(5/2){[1-(-1)^n]/2-n(-1)^n}
Sn=-[1-(-1)^n]/2+(5/2){[1-(-1)^n]/2-n(-1)^n}
=-1/2+(1/2)(-1)^n+5/4-(5/4)(-1)^n-(5/2)n(-1)^n
=3/4-(1/4)(3+10n)(-1)^n

an==(-1)^(n-1) *5n-(-1)^(n-1)
讨论;
1.先看后半部分,这个比较简单:若n为偶数,后边为0,奇数为1
2.再看前半部分,两项两项结合,如 a(n-1)+an=(-1)^(n-1) *(-5)
若n为偶数,则为5,那么一共能结合成 n/2 组,所以为 5n/2
若n为奇数,则结合到 (n-1)项,和为 5*(n-1)/2 加最后...

全部展开

an==(-1)^(n-1) *5n-(-1)^(n-1)
讨论;
1.先看后半部分,这个比较简单:若n为偶数,后边为0,奇数为1
2.再看前半部分,两项两项结合,如 a(n-1)+an=(-1)^(n-1) *(-5)
若n为偶数,则为5,那么一共能结合成 n/2 组,所以为 5n/2
若n为奇数,则结合到 (n-1)项,和为 5*(n-1)/2 加最后一项 5n-1 得 (15n-7)/2
当n=1时s1=4,符合上面求和通式。
综合可得
1.若n为偶数,sn= 5n/2+1;
2.若n为奇数,sn=(15n-7)/2

收起

已知数列{an}满足关系式lg(1+a1+a2+.+an)=n,求数列{an}的通项公式 已知数列{an},a1=1,an+1=3an/2an+3,(1)求数列{an}的前五项)(2)数列{an}的通项公式 已知数列{an}满足a1=1,an+1=2an/(an+2)(n∈N+),则数列{an}的通项公式为 已知数列{an},a1=3 an+1=2an-1求数列{an}的通项公式 已知数列{an}中a1=1,an+1-an=3n,求数列{an}的通项公式. 已知数列{an},a1=2,an+1=an+2n,则数列的通项公式an=? 已知数列{an}中a1=2,an+1-an=3n,求数列{an}的通项公式. 高三数列数列题已知在数列an中,a1=2,(an+1)/an=an+2,n=1,2,3证明数列lg(1+an)是等比数列,并求出an的通项公式 已知数列an满足a1=1/2,(an+1-1)(an-1)-an+1+an=0求数列an的通项公式 已知数列{an}的通项公式an与前n项Sn公式之间满足Sn=2-3an求1)数列{an}的通项公式 2)数列{an}的前n项和Sn 已知数列{an}中,已知a1=1,an+1=an/1+2an,(1)求证数列{1/an}是等差数列;(2)求数列{an}的通项公式. 已知数列an满足1/a-an=2根号n,且an>0.求an的通项公式是数列{an}满足1/an-an=2根号n,且an>0,求an的通项公式。 已知数列{an}中,a1=1,an+1=3an+(3的n)次方,求数列{an}的通项公式 已知数列{an}满足a1=b,an=nban-1/an-1+n-1(n大于等于2),求数列an的通项公式 已知数列{an}中,a1=1,an+1=1/a*(an)^2(a>0),求数列{an}的通项公式 已知数列 an 满足a1=1,an+1(1为下标)=3an+4求数列an的通项公式 已知数列{an}a1=1 an+1=3an/an+3 (n∈n*)求 an的通项公式 已知数列{an}中,a1=2,anan+1+an+1=2an已知数列{an}中,a1=2,an*(an+1)+(an+1)=2an 求{an}的通项公式