先化简,再求值,先化简,再求值,【1/(x-y)】-【1/(x+y)】/【xy²/(x²-y²)】,其中x=√2+1,y=√2-1

来源:学生作业帮助网 编辑:作业帮 时间:2024/12/01 11:49:38
先化简,再求值,先化简,再求值,【1/(x-y)】-【1/(x+y)】/【xy²/(x²-y²)】,其中x=√2+1,y=√2-1
xTQ@+A풄S#Hї (祶VY*)Eu5اgw\[S-ofvgQa{>k{:{Dç̣z6N 7͙H)E0 {qwHLQ8pȵ?0K ǸPR$pbcѻp:b_ 8 \bKKhH& GA L;8fCvxrTojW*w3AgVķAjDΒY=@orL+栍4*mN^+T صV ]\'CYMHEg2fʧeh9O=Q" ,i(NN\΂n1;rrݱs6)~[=ux›yDZaLMFup:?·L>h @G-QoGEJ

先化简,再求值,先化简,再求值,【1/(x-y)】-【1/(x+y)】/【xy²/(x²-y²)】,其中x=√2+1,y=√2-1
先化简,再求值,
先化简,再求值,【1/(x-y)】-【1/(x+y)】/【xy²/(x²-y²)】,其中x=√2+1,
y=√2-1

先化简,再求值,先化简,再求值,【1/(x-y)】-【1/(x+y)】/【xy²/(x²-y²)】,其中x=√2+1,y=√2-1
由条件得:x-y=2,xy=﹙√2+1﹚﹙√2-1﹚=2-1=1,∴﹙xy﹚²=1,∴原式=1/﹙x-y﹚-[1/﹙x+y﹚]×[﹙x²-y²﹚/﹙xy²﹚]=1/﹙x-y﹚-[﹙x+y﹚﹙x-y﹚]/[﹙x+y﹚﹙xy²﹚]=1/﹙x-y﹚-x﹙x-y﹚/﹙xy﹚²=1/2-2﹙√2+1﹚=½-2√2-2=-3/2-2√2

上下乘(x²-y²):
{[1/(x-y)]-[1/(x+y)]}/[xy²/(x²-y²)]
=[(x+y)-(x-y)]/xy²
=2y/xy²
=2/xy
=2/(√2+1)(√2-1)
=2/(2-1)
=2

【1/(x-y)】-【1/(x+y)】/【xy²/(x²-y²)】
=,【1/(x-y)】-【1/(x+y)】×【(x²-y²)/xy²】,
=【(x+y)xy²-(x-y)(x²-y²)】/【(x-y)(x+y)xy²】
={(x+y)【xy²-(x-y)(x-y...

全部展开

【1/(x-y)】-【1/(x+y)】/【xy²/(x²-y²)】
=,【1/(x-y)】-【1/(x+y)】×【(x²-y²)/xy²】,
=【(x+y)xy²-(x-y)(x²-y²)】/【(x-y)(x+y)xy²】
={(x+y)【xy²-(x-y)(x-y)】}/【(x-y)(x+y)xy²】
=【xy²-(x-y)(x-y)】/【(x-y)xy²】
x=√2+1,
y=√2-1
x-y=2 xy²=√2-1 所以)【xy²-(x-y)(x-y)】/【(x-y)xy²】=(√2-5)/(2√2-2)

收起

〔(5/(a-2))-a-2〕=(3 a)(3-a)/(a-2) 消除同类项可知 原式等于 (-1)/2(3 a)=(-1)/2√3=-√3/6 望采纳 〔(a-3