用数学归纳法证明1²+2²+3²+……+n²=n(n+1)(2n+1)/6

来源:学生作业帮助网 编辑:作业帮 时间:2024/12/05 03:30:31
用数学归纳法证明1²+2²+3²+……+n²=n(n+1)(2n+1)/6
x){>eų]t6?

用数学归纳法证明1²+2²+3²+……+n²=n(n+1)(2n+1)/6
用数学归纳法证明1²+2²+3²+……+n²=n(n+1)(2n+1)/6

用数学归纳法证明1²+2²+3²+……+n²=n(n+1)(2n+1)/6
当n=1时,1*(1+1)(2*1+1)/6=1,成立.
当n=2时,2*(2+1)(2*2+1)/6=5,成立.
假设n=k时,1²+2²+3²+……+n²=n(n+1)(2n+1)/6成立,
但n=k+1时,
1²+2²+3²+……+k²+(k+1)²
=(1²+2²+3²+……+k²)+(k+1)²
=k(k+1)(2k+1)/6+(k+1)²
=(k+1)(k(2k+1)/6+(k+1))
=(k+1)((2k²+k+6k+6)/6)
=(k+1)(2k²+k+6k+6)/6
=(k+1)(2k²+7k+6)/6
=(k+1)((k+2)(2k+3))/6
=(k+1)(k+2)(2k+3)/6
=(k+1)((K+1)+1)(2(k+1)+1)/6
得证