已知函数f(x)=2x+2/x+alnx,a∈R(1)若函数f(x)在[1,正无穷)上2单调递增,求实数a的取值范围(2)记函数g(x)=x²[f′(x)+2x-2],若g(x)的最小值是-6,求函数f(x)的最小值

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 19:30:47
已知函数f(x)=2x+2/x+alnx,a∈R(1)若函数f(x)在[1,正无穷)上2单调递增,求实数a的取值范围(2)记函数g(x)=x²[f′(x)+2x-2],若g(x)的最小值是-6,求函数f(x)的最小值
xVQOP+Mh)ٖ#j4e2!Q. 2 iaB$=Ľ;}߽B ξ՘e$*Q1DwJLi6qW;JC{|k̼$ 8(E/;Kt Y(]bĭ5\iVXIy,ٞz>052NaUD0BC,vνR`! Bo=dk^_|!|zqP۵y߷ZJJ&h6UqEbE#5l.M Po+H_dؙ [[wxZq#㴏Nzӱ` g:;G =aO1!%).~ƾㄽ5{ju )QQdˤn@5}`Â<2IW JTڤўV&h檅|\B!Z0fĽ>0*PInB%Ny>X>gOl Ly`('&&}W$:ݻ\E1:V!"9QNCmor6Cz}o1Wٿ1 xp}yb_ne@ ivUKXvyjڹE{o7ijWܫ};裸uIlGyASVbJ

已知函数f(x)=2x+2/x+alnx,a∈R(1)若函数f(x)在[1,正无穷)上2单调递增,求实数a的取值范围(2)记函数g(x)=x²[f′(x)+2x-2],若g(x)的最小值是-6,求函数f(x)的最小值
已知函数f(x)=2x+2/x+alnx,a∈R
(1)若函数f(x)在[1,正无穷)上2单调递增,求实数a的取值范围
(2)记函数g(x)=x²[f′(x)+2x-2],若g(x)的最小值是-6,求函数f(x)的最小值

已知函数f(x)=2x+2/x+alnx,a∈R(1)若函数f(x)在[1,正无穷)上2单调递增,求实数a的取值范围(2)记函数g(x)=x²[f′(x)+2x-2],若g(x)的最小值是-6,求函数f(x)的最小值
f(x)的定义域为x>0
f'(x)=2-2/x²+a/x=(2x²+ax-2)/x²
由题意得:f'(x)≧0对x∈[1,正无穷)恒成立
即2x²+ax-2≧0对x∈[1,正无穷)恒成立
分离变量:ax≧-2x²+2 x>0可同除x
a≧-2x+2/x
令g(x)=-2x+2/x x∈[1,正无穷)
易得g(x)在[1,正无穷)上单调递减
所以,g(x)max=g(1)=-2+2=0
所以:a≧0
即实数a的取值范围是:a≧0

f'(x)=2-2/x²+a/x=(2x²+ax-2)/x²
因为f(x)在[1,+∞)上增,从而f'(x)≥0对于x∈[1,+∞)恒成立,
即2x²+ax-2≥0,x∈[1,+∞)
a≥(2-2x²)/x,x∈[1,+∞)
令 g(x)=(2-2x²)/x=2/x -2x,x∈[1,+∞)
则g'...

全部展开

f'(x)=2-2/x²+a/x=(2x²+ax-2)/x²
因为f(x)在[1,+∞)上增,从而f'(x)≥0对于x∈[1,+∞)恒成立,
即2x²+ax-2≥0,x∈[1,+∞)
a≥(2-2x²)/x,x∈[1,+∞)
令 g(x)=(2-2x²)/x=2/x -2x,x∈[1,+∞)
则g'(x)=-2/x²-2<0,从而 g(x)在[1,+∞)上是减函数,最大值为g(1)=0
所以 a≥[g(x)]max=0
即a≥0

收起

f(x)的定义域为x>0
f'(x)=2-2/x²+a/x=(2x²+ax-2)/x²
由题意得:f'(x)≧0对x∈[1,正无穷)恒成立
即2x²+ax-2≧0对x∈[1,正无穷)恒成立
分离变量:ax≧-2x²+2 x>0可同除x
a≧-2x+2/x

全部展开

f(x)的定义域为x>0
f'(x)=2-2/x²+a/x=(2x²+ax-2)/x²
由题意得:f'(x)≧0对x∈[1,正无穷)恒成立
即2x²+ax-2≧0对x∈[1,正无穷)恒成立
分离变量:ax≧-2x²+2 x>0可同除x
a≧-2x+2/x
令g(x)=-2x+2/x x∈[1,正无穷)
易得g(x)在[1,正无穷)上单调递减
所以,g(x)max=g(1)=-2+2=0
所以:a≧0
即实数a的取值范围是:a≧0

祝你开心!希望能帮到你,如果不懂,请追问,祝学习进步!

收起

求导得f'(x)=(2x^2+ax-2)/x^2.要在(1,正无穷)上,f'(x)>0,x^2>0.即要2x^2+ax-2>0,x=1代入得a>0.对称轴-a/4<1.得a>-4.所以得a>0.