已知关于x的方程x²+(2k+1)+k²-2=0的两个实数根的平方和是11,求k的值?九年级上册数学题
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/27 06:33:37
xRJ@ 5mԊI)ǢUkUZ+d7dig9s
{{Ϯj3jZ{a|
}"m#WBH(cO|B@XZ輱&h=',|[7Qֶ=^w.E_cTavUM2!IaK01)3H={TST#TDA9n&جR=@,Ջ $[?բ":h"+e&kV@4$DHDdT0&)ٞ( - ;@tXRWƏ`_?{Ctm2jKwZp@l%B0D2o"gǵ|ftL3p:24X^ĝ
已知关于x的方程x²+(2k+1)+k²-2=0的两个实数根的平方和是11,求k的值?九年级上册数学题
已知关于x的方程x²+(2k+1)+k²-2=0的两个实数根的平方和是11,求k的值?九年级上册数学题
已知关于x的方程x²+(2k+1)+k²-2=0的两个实数根的平方和是11,求k的值?九年级上册数学题
由题意得:(2k+1)^2--4(k^2--2)>=0
4k^2+4k+1--4k^2+8>=0
4k>=--9
k>=--9/4
设关于x的方程的两根分别是:x1,x2,
则 x1^2+x2^2=11
由根与系数的关系可得:x1+x2=--(2k+1)
x1*x2=k^2--2
因为 (x1+x2)^2=x1^2+x2^2+2x1*x2
所以 [--(2k+1)]^2=11+2(k^2--2)
4k^2+4k+1=11+2k^2--4
2k^2+4k--6=0
k^2+2k--3=0
(k+3)(k--1)=0
k1=--3,k2=1,
因为 k=--3=--9/4,
所以 本题答案k的值是:k=1.
11+(2k+1)+k^2-2=0
k^2+2k+10=0
k=(-2+(-36)^0.5)/2 和 k=(-2-(-36)^0.5)/2 (都是虚数)