对于数列{an}任意n∈N*数列{an+a(n+1)}是公差为1的等差数列,且a1a2,a2a3,a3a4成公差为2的等差数列,求{an}通项公式(a1=1,a2=2,a3=2,a4=3)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/28 22:57:05
对于数列{an}任意n∈N*数列{an+a(n+1)}是公差为1的等差数列,且a1a2,a2a3,a3a4成公差为2的等差数列,求{an}通项公式(a1=1,a2=2,a3=2,a4=3)
xՒN0_g#:.W0h^QЈIB?: \ vo@l]:|RokSValy;.cZEbEM|~`b%r^5xР6Msw:ȒK%ա\l[wmjV͕:^ ҉Yue, BDXGZz"6*0g~:{r +V7 uAe)R e3̰$7 z3h2n LLTAdMF$$^xCzIE}fσs<&ϗiEL{'=\pSs!A`)ם !;w<*P5ʸ

对于数列{an}任意n∈N*数列{an+a(n+1)}是公差为1的等差数列,且a1a2,a2a3,a3a4成公差为2的等差数列,求{an}通项公式(a1=1,a2=2,a3=2,a4=3)
对于数列{an}任意n∈N*数列{an+a(n+1)}是公差为1的等差数列,且a1a2,a2a3,a3a4成公差为2的等差数列,求{an}通项公式(a1=1,a2=2,a3=2,a4=3)

对于数列{an}任意n∈N*数列{an+a(n+1)}是公差为1的等差数列,且a1a2,a2a3,a3a4成公差为2的等差数列,求{an}通项公式(a1=1,a2=2,a3=2,a4=3)
依题意得 an+a(n+1)=(a1+a2)+(n-1)*1=3+n-1=n+2  ①
从而得到 a(n+1)+a(n+2)=n+3   ②
②-①得 a(n+2)-an=1,a(n+2)=1+an
于是 当n为奇数时,an=1+(n-1)/2=(n+1)/2
当n为偶数时,an=2+(n-2)/2=(n+2)/2
利用(-1)^n,以上两种情形可统一为 an=[2n+3+(-1)^n]/4
这就是要求的通项公式

已知在正项数列{An}中,对于一切n∈N*均有An²≦An-A(n+1成立) ①证明:数列已知在正项数列{An}中,对于一切n∈N*均有An²≦An-A(n+1成立) ①证明:数列{An}中的任意一项都小于1.②探究{A 数列{an}的各项均为正数,Sn为其前n项和,对于任意n∈N+,总有an,Sn,an 在数列{an}中,a1=1 并且对于任意实数n∈N*,都有an+1=an/2an+1(1)证明数列{1/an}为等差数列,并求{an}的通项公式 问一道关于数列的题设正项数列{an}的前n项和为Sn,并且对于任意n∈N*,an与1的等差中项等于√Sn,求数列{an}的通项公式.急用, 数列an满足a1=2,对于任意的n∈正整数集,都有an>0,且(n+1)an^2+an*an+1(是下标)-n(an+1)^2=0,求an通项 对于任意数列,规定(An)称为(An)的一阶差分数列对数列{an},规定{△an}为数列{an}的一阶差分数列,其中△an=a(n+1)-an,(n属于N*),对正整数k,规定{△^k an}为{an}的k阶差分数列,其中△^k an=△^(k-1)a(n+1)-△^(k 数列{an}的各项均为正数,Sn表示该数列前n项的和,对于任意的n∈N*,总有an,Sn,an²成等差数列 (1) 设数列求数列{an}的通项公式;(2)设数列{bn}的通项公式是bn=an+4ⁿ-¹(n∈N*),Bn是数 设数列{an}的前n 项和为Sn,对于任意的正整数n,都有an=5Sn+1成立,设bn=(4+an)/(1-an)(n∈N+)(1)求数列{an}与数列{bn}的通项公式(2)设数列(bn)的前n项和为Rn,求证:对任意正整数K,都有Rn 数列{an}的各项均为正数,Sn为其前n项和,对于任意n∈N+,总有an,Sn,an平方成等差数列.求数列{an}的通项公式! 已知数列an是递增数列,且对于任意的自然数n【n大于等于1】,an=n2+入n恒成立,入的范围 已知数列{An}是递增数列,且对于任意正整数n,An=n²-λn恒成立,则实数λ的取值范围是? 数列an的通项公式an=(n+1)*0.9^n是否存在着项的自然数N,使得对于任意自然数n都有an 数列{an}对任意n∈N*都满足,且a3=2,a7=4,an>0,则an等于多少?不好意思,这个才是要解决的:数列{an}对于任意正整数n满足a[n+2(下标)]^2=an·an+4,且a3=2,a7=4,an>0,则an 等于多少? 1.数列{An}中,A1=8,A4=2且满足A(n+20)=2A(n+1)-An 问(1)求数列{An}的通项公式 (2)设Sn=|A1|+|A2|+……+|An|,求Sn2.数列{An}满足A1=2,对于任意的n∈N都有An>0,且(n+1)An^2+An×A(n+1)-nA(n+1)=0,又知数列{Bn}的通项公 数列{an}的各项均为正数,Sn为其前n项和,对于任意n∈N*,总有an,Sn,an2成等差数列.设数列{bn}的前n项 在数列{an}中,an=n^2+kn,对于任意的正整数n都有an+1大于an恒成立,求K的取值范围 已知数列 an的前n项和为Sn,且对于任意的n∈正整数,恒有Sn=2an-n,设bn=log2(an+1).1.求证,数列{an+1}是等比数列2.求数列{an},{bn}的通项公式an和bn.3.若Cn=2^bn/(anXa(n+1)),证明:C1+C2+……+Cn 已知数列{an}的前n项和是Sn,且对于任意自然数n,Sn=6-an-3/[2^(n-1)],求通项公式an