求极限 n趋向于无穷 lim((根号下n^2+1)/(n+1))^n

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/14 20:50:22
求极限 n趋向于无穷 lim((根号下n^2+1)/(n+1))^n
xR]KA+! l(bbdgvn&)S[P"R З(ڪ5}/tDXh_>eν3nO>>:pt=}~]I]OG?wUA5`(vn^2^ŲΫlCjQFn' ?68;]4gE!FBFC0> d2}jI `A–!aXXfБT[ _A / rIذpg!-nԋ^HnoF4&Us!5ŭOYqPIP@5 ՞HxΐY`qmIϔ_&A~e?L̲Ldhiw>nʬG tAi+/E

求极限 n趋向于无穷 lim((根号下n^2+1)/(n+1))^n
求极限 n趋向于无穷 lim((根号下n^2+1)/(n+1))^n

求极限 n趋向于无穷 lim((根号下n^2+1)/(n+1))^n
设y=[√(n^2+1)/(n+1)]^n
lny=nln[√(n^2+1)/(n+1)]=n[1/2ln(n^2+1)-ln(n+1)]
lim(n→∞)lny=lim[1/2ln(n^2+1)-ln(n+1)]/n^(-1)
=lim(n→∞)[n/(n^2+1)-(n+1)]/[-n^(-2)](洛必达法则)
=-lim(n→∞)(n-1)n^2/[(n^2+1)(n+1)]
=-1
所以lim(n→∞)y=1/e