设数列an的前n项和为Sn=2n∧2,bn为等比数列,且a1=b1,b2(a2-a3)=b1(1)求数列an和bn的通项公式(2)设cn=an/bn,求数列cn的前n项和Tn

来源:学生作业帮助网 编辑:作业帮 时间:2024/12/02 04:33:03
设数列an的前n项和为Sn=2n∧2,bn为等比数列,且a1=b1,b2(a2-a3)=b1(1)求数列an和bn的通项公式(2)设cn=an/bn,求数列cn的前n项和Tn
xSn@׵7o~n+yy~@($UJ(Q HRҋ/vS~]U₸xw޾yov=/2%jv$ɷ(Ko+#xRa8;cKtp!'$@NqC5Zrs>=\NѴDTޯ^*?X] gLPTWѶY(.xB`rW$ qm i[,R KN&H[ʖuXq #|c5ر >;&-ԒvmpiB7[Yu|YY -MpI]ƿB]_K^e-݀fVP%ÂCuEsEdB`*U:!'[Vh?m[ez^=}m̓I@}/?$im{(V_ aQR=l.=2K?ƧYz>{a~z)'8xtzSi1zW}}p8@$`X{2/

设数列an的前n项和为Sn=2n∧2,bn为等比数列,且a1=b1,b2(a2-a3)=b1(1)求数列an和bn的通项公式(2)设cn=an/bn,求数列cn的前n项和Tn
设数列an的前n项和为Sn=2n∧2,bn为等比数列,且a1=b1,b2(a2-a3)=b1(1)求数列an和bn的通项公式
(2)设cn=an/bn,求数列cn的前n项和Tn

设数列an的前n项和为Sn=2n∧2,bn为等比数列,且a1=b1,b2(a2-a3)=b1(1)求数列an和bn的通项公式(2)设cn=an/bn,求数列cn的前n项和Tn
a(1)=2,
a(n+1)=s(n+1)-s(n)=2(2n+1)=4n+2,
a(n)=4(n-1)+2.
b(n)=2q^(n-1),
2=b(1)=b(2)[a(2)-a(3)]=2q[-4],
q=-1/4.
b(n)=2(-1/4)^(n-1).
c(n)=a(n)/b(n)=[4(n-1)+2]/[2(-1/4)^(n-1)]=[2(n-1)+1](-4)^(n-1),
t(n)=[2(1-1)+1] + [2(2-1)+1](-4) + [2(3-1)+1](-4)^2 + ...+ [2(n-1-1)+1](-4)^(n-2) + [2(n-1)+1](-4)^(n-1),
-4t(n)=[2(1-1)+1](-4) + [2(2-1)+1](-4)^2 + ...+[2(n-1-1)+1](-4)^(n-1) + [2(n-1)+1](-4)^n
5t(n)=t(n)-[-4t(n)]=[2(1-1)+1] + [2](-4)+[2](-4)^2+...+[2](-4)^(n-1) - [2(n-1)+1](-4)^n
=-1+2[1+(-4)+(-4)^2+...+(-4)^(n-1)] -(2n-1)(-4)^n
=-1-(2n-1)(-4)^n + 2[1-(-4)^n]/[1-(-4)]
=-3/5 -(2n-1)(-4)^n - (2/5)(-4)^n
t(n)=-3/25 - [2n-3/5](-4)^n/5

数列an的前n项和为Sn=2n∧2
an=2(2n-1)=4n-2,d=4,a1=2=b1
b2(a2-a3)=b1,b1/b2=(a2-a3)=-4,即b2/b1=q=-1/4
bn=-1/2*(-1/4)^n
cn=an/bn=(4n-2)/[-1/2*(-1/4)^n]
=(4-8n)*(-4)^n
这个用高中知识没办法求和,因为n既在指数上,又在底上

设数列{an}的前n项和为Sn,已知ban-2n=(b-1)Sn 数列{an},中,a1=1/3,设Sn为数列{an}的前n项和,Sn=n(2n-1)an 求Sn 设数列{an}的前n项和为sn=n^2,求a8 求:设数列 {an}的前n项和为Sn,数列{Sn}的前n项和为Tn,满足Tn=2Sn一n²,n∈求:设数列 {an}的前n项和为Sn,数列{Sn}的前n项和为Tn,满足Tn=2Sn一n²,n∈N 设数列an的前n项和为Sn,若Sn=1-2an/3,则an= 设数列an的首项a1等于1,前n项和为sn,sn+1=2n设数列an的首项a1等于1,前n项和为sn,sn+1=2n 设数列an的前n项和为Sn,满足an+sn=An^2+Bn+1(A不等于0)an为等差数列,求(B-1)/A 已知数列{an}的通项公式an=log2[(n+1)/(n+2)](n∈N),设其前n项的和为Sn,则使Sn 已知数列{an}的前n项和为Sn,an+Sn=2,(n 设数列an的前n项和为Sn,已知ban-2^n=(b-1)Sn.求{an}的通项公式 设数列{an}的前n项和为Sn=2n²+2n+1 则求通项公式为 设数列{an}的前n项和为Sn,已知Sn=2an-2n+1,(n为下标,n+1为上标),求通项公式? 设Sn为数列an的前n项和,Sn=kn*2+n,n∈N*,其中k为常数,求a1,an 设数列{an}的前n项和为Sn,若a1=1,Sn=2an+Sn+(n∈N+),则a6= 设数列{an}的前n项和为Sn,且对任意正整数n,an+Sn=4096,)求{an}的通项公式设数列{log(2)A(n)},前n项和是Tn(n),(2)是下角标 设数列{an}的前n项和为Sn,数列{Sn}的前n项和为Tn,满足Tn=2Sn-n^2,n∈N*.求a1的值以及an的通项公式. 设数列an 的前n项和sn=-n^2+n 则a8 值为 设数列{an}的前n项和为Sn=3n^2-65n 求数列{IanI}的前n项和 Tn