已知实数a、b、c满足/a+1/+(5b-1)^2+(c^2+10c+25)=0,求(abc)^251/(a^11b^8c^7)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/26 12:19:27
已知实数a、b、c满足/a+1/+(5b-1)^2+(c^2+10c+25)=0,求(abc)^251/(a^11b^8c^7)
xP;0 cJRFP"HqvTl`6 %Cog(.y9[hLwp) !-ά3YRFL! @muԗuy6Vpw4-"[O~C *Ek\K$Mc<Wk`ZMץAnzYu;m+

已知实数a、b、c满足/a+1/+(5b-1)^2+(c^2+10c+25)=0,求(abc)^251/(a^11b^8c^7)
已知实数a、b、c满足/a+1/+(5b-1)^2+(c^2+10c+25)=0,求(abc)^251/(a^11b^8c^7)

已知实数a、b、c满足/a+1/+(5b-1)^2+(c^2+10c+25)=0,求(abc)^251/(a^11b^8c^7)
|a+1|+(5b-1)^2+(c^2+10c+25)=0
|a+1|+(5b-1)^2+(c+5)^2=0
|a+1|≥0,(5b-1)^2≥0,(c+5)^2=0
|a+1|=(5b-1)^2=(c+5)^2=0
a=-1,b=1/5,c=-5
abc=1
a^11b^8c^7=(abc)^7*a^4b=a^4b
(abc)^251/(a^11b^8c^7) = 1/(a^4b) = 1/[(-1)^4*1/5] = 5