(1)已知 x^2-x-1=0 求x^5-x^4-3x^2+x的值(2)若a^3-b^3=3a^2b-3ab^2+1,其中a,b为实数,则a-b=______.(3)已知m=x-y,n=xy试用m、n表示(x^3+y^3)^2(4)若x-y-z=3,yz-xy-xz=3,则x^2+y^2+z^2=(5)若关于x的二次三项式ax^2

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 02:24:29
(1)已知 x^2-x-1=0 求x^5-x^4-3x^2+x的值(2)若a^3-b^3=3a^2b-3ab^2+1,其中a,b为实数,则a-b=______.(3)已知m=x-y,n=xy试用m、n表示(x^3+y^3)^2(4)若x-y-z=3,yz-xy-xz=3,则x^2+y^2+z^2=(5)若关于x的二次三项式ax^2
xWRF~NBZlK .s;En{Ҥ2W@4$zCH?L|WJvk= O̭ܧv-O?v7o2sSͧx qҮX!oٖ7 r Jz55[~hsgQrX-{ܼ$Ǚ<lζs̥%N ˛6d,{rk= 3^u ?SG:.H)|MJlejx_k)',W[ː띟]'yhR\F8_A׬x%$C6+ _sr驿q[sQ)Y9˨xbAz5{9-2/ rv|BQ 0"M'R uq iQ5234efc߼X!~KUB?ndY1M p&iJX6抠K&ILA ٣\6oN.CDN P^x:7~CK-[Aa^u^#"K˰`ewWp'Ywp+3[KeD;EGR5>g'ǨD*S6~$>BPnBZi+3}fvlp.1ώx*A/EqRҨUäka~璠il*J"2%_!dTȈ',ĝ%_1'rovx7j 7O9^; O#\T6K%ғBm-vu:1 u^sMй|w~?XW"C@eEkyVQ*p?~Q_==||!i-E4E1gDy?Z=`K@yӊ.G|?Ch-QҰ1]Vx0`P  3 hA,p$iv&^ BaBF$鑂f- sFlԔK;*kS 9|@ i$. Dw@s5Hdt;QڇPZxu/ U`tMmL+W)7EH!QҲ/8 1AP)/$owi +jRRڗS+v΅H2Vdc>Ebҝ)-+х~?8 *F>@ha% &_CrIR3t Fq/j_WXfA^Mau7aìal c ]Ec<K^!!I^ӲP gֲr_2c\Z&.-fqf|3XaW7,9nk'8F?wv? δm}

(1)已知 x^2-x-1=0 求x^5-x^4-3x^2+x的值(2)若a^3-b^3=3a^2b-3ab^2+1,其中a,b为实数,则a-b=______.(3)已知m=x-y,n=xy试用m、n表示(x^3+y^3)^2(4)若x-y-z=3,yz-xy-xz=3,则x^2+y^2+z^2=(5)若关于x的二次三项式ax^2
(1)已知 x^2-x-1=0 求x^5-x^4-3x^2+x的值
(2)若a^3-b^3=3a^2b-3ab^2+1,其中a,b为实数,则a-b=______.
(3)已知m=x-y,n=xy试用m、n表示(x^3+y^3)^2
(4)若x-y-z=3,yz-xy-xz=3,则x^2+y^2+z^2=
(5)若关于x的二次三项式ax^2=3x-9的两个因式的和3x,则a=
(6)当x=-1时,x^3+2x^2-5x-6=0,请根据这一事实,将x^3+2x^2-5x-6分解因式
(7)已知关于x的方程(k-2)x^2+k=(2k-1)x有两个不相等的实数根,求k的值
(8)当x为何值时,关于x的方程(m^2-4)x^2+2(m+1)x+1=0有实数根
(9)若m,n是方程x^2+2x-2002=0的两个实数根,代数式3m+mn+3n的值是
(10)已知二次函数y=ax^2+bx+10,当x=3时的函数值与当x=2006时的函数值相等,求当x=2009是的函数值.
以上这些题课都要写出过程、谢谢!
如果会的话就帮帮我吧、在下感激不尽、即使你有的不会,那就把你会的写上也可以、不过要写清楚题号啊!

(1)已知 x^2-x-1=0 求x^5-x^4-3x^2+x的值(2)若a^3-b^3=3a^2b-3ab^2+1,其中a,b为实数,则a-b=______.(3)已知m=x-y,n=xy试用m、n表示(x^3+y^3)^2(4)若x-y-z=3,yz-xy-xz=3,则x^2+y^2+z^2=(5)若关于x的二次三项式ax^2
1:x^5-x^4-3x^2+x
=x^5-x^4-x^3 + x^3-3x^2+x
=x^3*(x^2-x-1)+ x^3-3x^2+x
=0 + x^3-3x^2+x
=(x^3-x^2-x) - 2x^2+2x
=0 - 2x^2+2x
=(- 2x^2+2x+2) -2
= 0 -2 = -2.
2:a^3-b^3=3a^2b-3ab^2+1
=>a^3-b^3-3a^2b+3ab^2=1
=>(a-b)^3=1
=>a-b=1.
3:(x^3+y^3)^2
=(x^3-y^3)^2 +4x^3y^3
=[(x-y)(x^2+xy+y^2)]^2 +4(xy)^3
=[(x-y)((x-y)^2+3xy]^2 +4(xy)^3
=[m(m^2+3n)]^2 +4n^3.可以进一步展开
4:(x-y-z)^2=x^2+y^2+z^2+2*(yz-xy-xz),即:
3^2=x^2+y^2+z^2+2*3,从而x^2+y^2+z^2=3.
5:原多项式应该是ax^2+3x-9.因为因式的和是3x,没有常数项,故常数互 为相反数,可设分解为(a1*x+b)(a2*x-b)的形式,从而待定系数得:
a1*a2=a;
a1+a2=3;
-b^2=-9
b*a2-b*a1=3.(因式的和是3x)
解得a=2.
6:根据事实,原式有一因式是x+1,从而:
x^3+2x^2-5x-6
=(x^3+x^2)+ x^2-5x-6
=x^2(x+1) + (x+1)(x-6)
=(x+1)(x^2+x-6)
=(x+1)(x-2)(x+3).
7:原方程化简为:(k-2)x^2-(2k-1)x+k=0.
首先为了保证是二次方程,必须使k不等于2.再由判别式大于零得到:
(2k-1)^2-4(k-2)k>0,得到k>-1/4.所以k的取值在[-1/4,正无穷]且不等 于2处任意选取.
8:首先m=2或-2时方程必有根.否则需要其判别式非负,即:
4(m+1)^2-4(m^2-4)>=0,解得m>=-5/2.
所以综合知m>=-5/2.
9:由根与系数关系知:mn=-2002,m+n=-2,故:
3m+mn+3n=3(m+n)+mn=3*(-2)-2002=-2008.
10:说明对称轴是(2006+3)/2,即:-b/(2a)=2009/2,b+2009a=0.
f(2009)=a*2009^2+b*2009+10=2009*(2009a+b)+10=0+10=10.

(1):x^2-x-1=0 => x(x-1)=1 => x-1=1/x
x^5-x^4-3x^2+x
=x^4(x-1)-3x^2+3x-2x
=x^3-3x(x-1)-2x
=x(x^2-1)-x-3
=x(x-1)(x+1)-x-3
=x+1-x-3
=-2
(2):a^3-b^3=(...

全部展开

(1):x^2-x-1=0 => x(x-1)=1 => x-1=1/x
x^5-x^4-3x^2+x
=x^4(x-1)-3x^2+3x-2x
=x^3-3x(x-1)-2x
=x(x^2-1)-x-3
=x(x-1)(x+1)-x-3
=x+1-x-3
=-2
(2):a^3-b^3=(a-b)(a^2+ab+b^2)=3a^2b-3ab^2+1=3ab(a-b)+1
=> (a-b)(a^2+ab+b^2-3ab)=1
=> (a-b)^3=1
=> a-b=1
(3):(x^3+y^3)^2
=(x+y)^2(x^2-xy+y^2)^2
=((X-Y)^2+4xy) ((x-y)^2+xy)^2
=(m^2+4n)(m^2+n)^2
(4):(x-y-z)^2=x^2+y^2+z^2+2(zy-xy-zx)
=>x^2+y^2+z^2=(x-y-z)^2-2(zy-xy-zx)
=3^2-2*3
=3
(5):原式=(x-(3+sqrt(9-36a))/2a)(x-(3-sqrt(9-36a))/2a)
而(x-(3+sqrt(9-36a))/2a)+(x-(3-sqrt(9-36a))/2a)
=2x-3/a=3x
=>x=-3/a 代入原方程解得
a=-2
(6):x^3+2x^2-5x-6
=x^3-x+2x^2+2x-6x-6
=x(x+1)(x-1)+2x(x+1)-6(x+1)
=(x+1)[x(x-1)+2x-6]
=(x+1)(x^2+x-6)
=(x+1)(x+3)(x-2)
(7):(2k-1)^2-4k(k-2)>0
k>-1/4
(8):4(m+1)^2-4(m^2-4)>=0
m>=-5/2
(9):m+n=-2
mn=-2002
3m+mn+3n=-6-2002=-2008
(10):f(3)=f(2006)
=>f(2009)=f(2006+3)=f(3-3)=f(0)=10

收起

为什么不能修改了呀