求极限lim n→∞(1/(n+1)+1/(n+2)+.+1/(n+n) 求极限(1/(n+1)+1/(n+2)+.+1/(n+n)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/24 07:02:14
求极限lim n→∞(1/(n+1)+1/(n+2)+.+1/(n+n) 求极限(1/(n+1)+1/(n+2)+.+1/(n+n)
xT]@+}ءv}cb Y_HԤ*[lV1QR!iۙa}7 \ss%6fʣ׏nW5(:Rj EAR~sNvZTz5d+5r96nS'sHp9"JVʶY.:6A~M40!_Bx L{jt '(\[R.;a8hӽ\9S(5 O"wecy ;1 σǤZҳ)yAs`FV껔M̝/ME?7t>[g\tTQ=#Npк CF;X8`{MN&Gg  ̀g ,LB,VE-(WVX!QM,H(30K! Xg }Տwt|L}e˖%uzsTN`$(k8ܥS0BN*f? K]

求极限lim n→∞(1/(n+1)+1/(n+2)+.+1/(n+n) 求极限(1/(n+1)+1/(n+2)+.+1/(n+n)
求极限lim n→∞(1/(n+1)+1/(n+2)+.+1/(n+n) 求极限(1/(n+1)+1/(n+2)+.+1/(n+n)

求极限lim n→∞(1/(n+1)+1/(n+2)+.+1/(n+n) 求极限(1/(n+1)+1/(n+2)+.+1/(n+n)
函数f(x)=1/(1+x).
用分点将区间[0,1]平均分成n份,分点是
x[k]=k/n,k=1,2,...,n.
利用定积分的定义,和式
∑{f(x[k])*(1/n),k=1...n}
当n->∞时的极限等于定积分
∫{f(x)dx,[0,1]}
而f(x[k])*(1/n)=1/(n+k),通项相等,也就是说你的式子等于上面的和式.
于是
lim[1/(n+1) +1/(n+2)+1/(n+3)+……1/(n+n),n->∞]
=∫{f(x)dx,[0,1]}
=∫{1/(1+x)dx,[0,1]}
=ln(1+x)|[0,1]
=ln(1+1)-ln(1+0)
=ln2

答:
利用调和级数欧拉常数表达式:
1+1/2+1/3+1/4+...1/n = ln[n+1]+r[欧拉常数]
1/(n+1)+1/(n+2)+......+1/(n+n)
=1+1/2+1/3+……+1/n+1/(n+1)+1/(n+2)+......+1/(n+n)-(1+1/2+1/3+……+1/n)
=∑1/(n+n)-∑1/n
=ln[2...

全部展开

答:
利用调和级数欧拉常数表达式:
1+1/2+1/3+1/4+...1/n = ln[n+1]+r[欧拉常数]
1/(n+1)+1/(n+2)+......+1/(n+n)
=1+1/2+1/3+……+1/n+1/(n+1)+1/(n+2)+......+1/(n+n)-(1+1/2+1/3+……+1/n)
=∑1/(n+n)-∑1/n
=ln[2n+1]-ln[n+1]
=ln[(2n+1)/(n+1)]
所以:
原式=lim(n→∞)ln[(2n+1)/(n+1)]=ln[2]

收起