在数列{an}中,a1=1,an+1=(1+1/n)an+(n+1)∕2n(1)设bn=an/n,求数列{bn}的通项公式.(2)求数列{an}的前n项和Sn.
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/25 11:53:24
在数列{an}中,a1=1,an+1=(1+1/n)an+(n+1)∕2n(1)设bn=an/n,求数列{bn}的通项公式.(2)求数列{an}的前n项和Sn.
在数列{an}中,a1=1,an+1=(1+1/n)an+(n+1)∕2n
(1)设bn=an/n,求数列{bn}的通项公式.
(2)求数列{an}的前n项和Sn.
在数列{an}中,a1=1,an+1=(1+1/n)an+(n+1)∕2n(1)设bn=an/n,求数列{bn}的通项公式.(2)求数列{an}的前n项和Sn.
A(n+1)=(n+1)An/n+(n+1)/2^n
A(n+1)/(n+1)=An/n+1/2^n
依此类推
An/n=A(n-1)/(n-1)+1/2^(n-1)
A(n-1)/(n-1)=A(n-2)/(n-2)+1/2^(n-2)
……
A2/2=A1/1+1/2^1
上式相加,相同项消去得
An/n=A1/1+(1/2^1+1/2^2+……+1/2^(n-1))
=1+1/2×(1-(1/2)^(n-1))/(1-1/2)
=2-1/2^n
即Bn=2-1/2^n
(2)
An/n=2-1/2^n
An=2n-n/2^n
{An}分为两部分,2n是等差数列,n/2^n是等差数列与等比数列相乘
第一部分求和
Sn1=(2+2n)n/2=(n+1)n
第二部分求和
Sn2=1/2+2/4+3/8+……+n/2^n
两边同乘2
2Sn2=1+2/2+3/4+……+n/2^(n-1)
两式错位相减
2Sn2-Sn2=1+[1/2+1/4+1/8……+1/2^(n-1)]-n/2^n
=1+1/2×(1-(1/2)^(n-1))/(1-1/2)-n/2^n
=2-(n+2)/2^n
Sn=Sn1-Sn2
=n^2+n-2+(n+2)/2^n
=(n-1)(n+2)+(n+2)/2^n