设等比数列{an}的公比为q,前n项和为Sn,若S(n+1) ,Sn ,S(n+2)成等差数列,则公比q=是不是=-2或1

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 13:27:30
设等比数列{an}的公比为q,前n项和为Sn,若S(n+1) ,Sn ,S(n+2)成等差数列,则公比q=是不是=-2或1
x){nOy6uӎՉyg^m@泎 @Sn_1EiLfH=fhTO{[`X_`g3P^~ټ9P^<ۼD0=F@`ʼn`Pu6<ٽ(ieO'ttWu^t>ۍG ]ha[5Itni`P1m&-uBe:!n.3.55$募^ b`=6yv d

设等比数列{an}的公比为q,前n项和为Sn,若S(n+1) ,Sn ,S(n+2)成等差数列,则公比q=是不是=-2或1
设等比数列{an}的公比为q,前n项和为Sn,若S(n+1) ,Sn ,S(n+2)成等差数列,则公比q=
是不是=-2或1

设等比数列{an}的公比为q,前n项和为Sn,若S(n+1) ,Sn ,S(n+2)成等差数列,则公比q=是不是=-2或1
如果q=1
则Sn=na1
S(n+1) ,Sn ,S(n+2)成等差数列
则2na1=(n+1)a1+(n+2)a1
所以a1=0不符合{an}是等比数列,舍去
如果q≠1
则Sn=a1(1-q^n)/(1-q)
S(n+1) ,Sn ,S(n+2)成等差数列
则2a1(1-q^n)/(1-q)=a1(1-q^(n+1))/(1-q)+a1(1-q^(n+2))/(1-q)
所以2q^n=q^(n+2)+q^(n+1)
即q^2+q-2=0
解得q=-2或q=1(舍去)