设等比数列{an}的公比为q,前n项和为Sn,若Sn+1,Sn,Sn+2成等差数列,则q的值为
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 17:27:06
xKN0( s,+.P\A *@;h 9MIWc7~h$OI|N@6yz>~[q=k5ff (0O]mgf>u=]z^J\3@p7եto,yt̚4z[F^)42P
FN+\4(oիQΈ!zUj;`ҩ9H=V{T}8^jVNT6#a
设等比数列{an}的公比为q,前n项和为Sn,若Sn+1,Sn,Sn+2成等差数列,则q的值为
设等比数列{an}的公比为q,前n项和为Sn,若Sn+1,Sn,Sn+2成等差数列,则q的值为
设等比数列{an}的公比为q,前n项和为Sn,若Sn+1,Sn,Sn+2成等差数列,则q的值为
2Sn=S(n+2)+S(n+1)(q不为1)
2a1(1-q^n)/(1-q)=a1[1-q^(n+2)]/(1-q)+a1[1-q^(n+1)]/(1-q)
2-2q^n=2-[q^(n+1)+q^(n+2)]
那么q+q^2=0
可得q=-1或q=0(舍去)
当q=1,Sn=na1
Sn+1=(n+1)a1
S(n+2)=(n+2)a1
显然a1=0,.
那就不可以了.
所以q=-1