已知函数f(x)=1/√ [(x^2)-4](x
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/29 17:57:51
xSn@~bqz7#iQ+^F+!b6
MDm DϡknBgwjdΌK'?=zxǎG cJTu+Tk12T7&8r]̣:-чW8m)k耎QN} "@`;"P ^gn}A2BRHut.DU^|eǷPFI~ ł8ƺ"Kϼv\$\7{2KJ -Ehe~tnӱRȨ[I°pѫ8:x璲" vXSYv}&nYIyY|n!oHK@:ڊ݃0hРkz'XDtP[XDN5#7H꿰pUNdńArM" /#2YA&V!:?$ɷLą8(mo;8o滈n?d5m)C#X:
已知函数f(x)=1/√ [(x^2)-4](x
已知函数f(x)=1/√ [(x^2)-4](x<-2).(√ 表示的是根号,符号不会打,将就看下吧)
(1)求f(x)的反函数f-1(x);
(2)设a1=1,1/a(n+1)=-f-1(an)(n∈N* ),求an;
(3)Sn=a1^2+a2^2+.+an^2,bn=S(n-1)-Sn是否存在最小正整数m,使得对任意n∈N* ,有bn
已知函数f(x)=1/√ [(x^2)-4](x
y=1/√(x^2-4)
x^2=4+1/y^2=(4y^2+1)/y^2
x<-2
所以x=-√[(4y^2+1)/y^2]=-√(4y^2+1)/y
所以反函数y=-√(4x^2+1)/x
1/a(n+1)=√(4an^2+1)/an
两边平方
1/[a(n+1)]^2=[4(an)^2+1]/(an)^2=4+1/(an)^2
1/[a(n+1)]^2-1/(an)^2=4
所以1/(an)^2是等差数列,d=4
a1=1,1/(a1)^2=1
所以1/(an)^2=1+4(n-1)=4n-3
1/a(n+1)=√(4an^2+1)/an,
因为a1>0,所以显然a2>0,所以a3>0,……,an>0
所以an=√[1/(4n-3)]
an^2=1/(4n-3)
Sn=a1^2+a2^2+……+an^2
bn=S(n-1)-S(n)?
是不是bn=Sn-S(n-1)?
若是则bn=an^2=1/(4n-3)
n>=1,所以4n-3>=1
所以0<1/(4n-3)<=1
所以只要m/25>1即可
m>25
所以m最小=26
已知函数f(x)=(2x-1)/√x,求不等式f(x-2)
已知F(x)为函数f(x)的一个原函数,且f(x)=F(x)/√(1+x^2),则f(x)=
已知函数f(x)=x^3+x^2-2x-x,f(1)f(2)
已知函数f(x)的导函数f’(x)是一次函数,且x^2f'(x) - (2x - 1)f(x)=1,求函数f(x)
已知函数f(x)=2x+1,x>=0;f(x)=|x|,x
已知函数f(x)=log2(x^2 +1)(x
已知函数f(x)=(2-a)x+1,x
已知函数f(x)= 2^x+1,x
已知函数f(2x+1)=(2x+1)/(x+1),求函数f(x)
已知函数f(x)=(2x-1)/x 判断函数f(x)的奇偶性
已知函数f(x-1)=2x^-x,则f(x)的导函数
已知函数f(x)=(x+1)/(2x-3),求f[f(x)]=?
已知函数f(x)满足f(2x+1)=xx+x,求f(x)
已知函数f(x)=2x平方,求f(-x),f(1+x)
已知函数f(x)=2x²,求f(-x),f(1+x)
已知函数f(x)=x的平方,求f'(x),f'(1),f'(-2),
已知函数f(x)满足2f(x/1)-f(x)=x ,x不等于0,则f(x)等于
求函数y=x+√1-x的值域 已知f(x)+2f(1/x)=3x,求f(x)只求已知f(x)+2f(1/x)=3x,求f(x)