数学题第六题第8题
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/28 05:12:55
xn@_ŊTiœ
q7U@B]t6 HE+!
Z}y!jxƗM)wGŇӯ>}rz}Z=Fboޛ,}PdogB0K&ǑFksaJAyPA"B)L5e+5
c!UIj;iBRhЀGZ( Cqʿ.nn[b7wG填LX|-v8q2 LMކ
(ҰuQ L:MX{xh]Őͦ߬e#>2\|`ϥeiVN[;u`F:enm ZX}kaVo8\yL}[ۢ-h`w
+Uٳ R>-g
数学题第六题第8题
数学题第六题第8题
数学题第六题第8题
⑥令t=1-x dx=-dt
∫(0,1) x/(e^x+e^(1-x))dx
=∫(0,1) (1-t)/(e^(1-t)+e^t)dt
=∫(0,1) dt/(e^t+e^(1-t)) - ∫(0,1) t/(e^(1-t)+e^t)dt
所以原式=(1/2)*∫(0,1) 1/(e^x+e^(1-x))dx
=(1/2)*∫(0,1) e^x/(e^2x+e)dx
=(1/2)*∫(0,1) d(e^x)/(e^2x+e)
=(1/2)*(1/√e)*arctan(e^x/√e)|(0,1)
=(1/2√e)*[arctan(√e)-arctan(1/√e)]
=(1/2√e)*[2arctan(√e)-π/2]
=(1/√e)*arctan(√e)-π/4√e
⑧原式=(1/e)*∫(1,+∞) e^x/(e^2x+e^2)dx
=(1/e)*∫(1,+∞) d(e^x)/(e^2x+e^2)
=(1/e^2)*arctan[e^(x-1)]|(1,+∞)
=π/2e^2-π/4e^2
=π/4e^2