设x+y+z=3.求代数式[3[xyz-xy-xz-yz]+6]/[[x-1]^3+[y-1]^3+[z-1]^3]的值

来源:学生作业帮助网 编辑:作业帮 时间:2024/12/01 10:27:01
设x+y+z=3.求代数式[3[xyz-xy-xz-yz]+6]/[[x-1]^3+[y-1]^3+[z-1]^3]的值
xQ=N0D&:"Q*Q㩢C[ B*Sz^9HINӂ;e}m9Lk ^daޏiVq5/LyAG>"uL԰j3VDPIt= }O6xS B*#7͎_K &q~cEO?B"B"BrP)ݓHd:fwm=Vg;{r(Ǎh!t@HP.dZop_׫iߦtb

设x+y+z=3.求代数式[3[xyz-xy-xz-yz]+6]/[[x-1]^3+[y-1]^3+[z-1]^3]的值
设x+y+z=3.求代数式[3[xyz-xy-xz-yz]+6]/[[x-1]^3+[y-1]^3+[z-1]^3]的值

设x+y+z=3.求代数式[3[xyz-xy-xz-yz]+6]/[[x-1]^3+[y-1]^3+[z-1]^3]的值
设 a=x-1,b=y-1,c=z-1,于是 a+b+c=0
xyz-xy-xz-yz = (a+1)(b+1)(c+1)- (a+1)(b+1)- (b+1)(c+1)- (c+1)(a+1)=abc -2
利用
a^3+b^3+c^3-3abc=(a+b+c)(a^2+b^2+c^2-ab-bc-ac)=0
得 a^3+b^3+c^3= 3abc,
于是
所以原式= (3abc-6+6)/(a^3+b^3+c^3)=(3abc)/(3abc) =1
注:前提是分母不为0,即abc不=0,即 x,y,z 都不等于1.

xzc