设数列{an}的前n项和为Sn,满足2Sn=an+1-2^(n+1)+1,且a1,a2+5.a3成等差数列,求数列{an}的通项公式;证明:对一切正整数n,有1/a1+1/a2+...1/an

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/25 10:25:18
设数列{an}的前n项和为Sn,满足2Sn=an+1-2^(n+1)+1,且a1,a2+5.a3成等差数列,求数列{an}的通项公式;证明:对一切正整数n,有1/a1+1/a2+...1/an
xTn1~qv\DQ#9KiUHj"DV UKhڧ7)M6XR|3qa88ƒts5n_o{KQ6R$Uĸ/*^yKI¸g+b6t[N=nu7uw^Ӎx@ďMS`A;*TrEjnXxPu]};W1o#o:6@5oY1o@d*KnyT$b㏧*V^=v'CObNfu]K E2!TG>2`9iK׾v밾**̇SFl̜H"(:y.yP}PMnDQOV³|*.X|wdoKT _uݭ N9s5"rgp|R6KRh)"300OCaBPrcf$nweq\~i8SG[LO 7XDJ&^*j0[uqF9:=2- rdpMi>7K$[wனVLʯzeeI*A`sIVkoliQ/ +2N(ܥI $Q[_g){

设数列{an}的前n项和为Sn,满足2Sn=an+1-2^(n+1)+1,且a1,a2+5.a3成等差数列,求数列{an}的通项公式;证明:对一切正整数n,有1/a1+1/a2+...1/an
设数列{an}的前n项和为Sn,满足2Sn=an+1-2^(n+1)+1,且a1,a2+5.a3成等差数列,求数列{an}的通项公式;证明:对一切正整数n,有1/a1+1/a2+...1/an

设数列{an}的前n项和为Sn,满足2Sn=an+1-2^(n+1)+1,且a1,a2+5.a3成等差数列,求数列{an}的通项公式;证明:对一切正整数n,有1/a1+1/a2+...1/an
你好很高兴回答你的问题
2Sn=a(n+1)-2^(n+1)+1令n=1,2联立(a2+5)*2=a1+a3得a1=1
2an=2sn-2sn-1=a(n+1)-an-2^n
即a(n+1)=3an+2^n
所以a(n+1)+2^(n+1)=3*(an+2^n)
an+2^n=(a1+2^1)*3^(n-1)=3^n
an=3^n-2^n
证明只要证1/a1+1/a2+...1/an

a1,a2+5,a3成等差数列
a1+a3 = 2(a2+5)
2a2-a3= a1-10 (1)
2Sn=a(n+1)-2^(n+1)+1
n=2
2S2 = a3- 7
2(a1+a2) = a3-7
2a2-a3 = -2a1-7 ...

全部展开

a1,a2+5,a3成等差数列
a1+a3 = 2(a2+5)
2a2-a3= a1-10 (1)
2Sn=a(n+1)-2^(n+1)+1
n=2
2S2 = a3- 7
2(a1+a2) = a3-7
2a2-a3 = -2a1-7
a1-10=-2a1-7 (2a2-a3= a1-10)
a1=1
2Sn=a(n+1)-2^(n+1)+1
= S(n+1)-Sn -2^(n+1)+1
S(n+1) = 3Sn +2^(n+1) -1
S(n+1) + 2[2^(n+1)] -1/2 = 3(Sn + 2(2^n) -1/2)
{Sn + 2(2^n) -1/2} 是等比数列, q=3
Sn + 2(2^n) -1/2 = 3^(n-1) .(S1 + 4 -1/2)
= (3/2).3^n
Sn = (3/2).3^n - 2(2^n) +1/2
an = Sn - S(n-1)
= 3^n - 2^n
(2)
1/an = 1/(3^n - 2^n)
= 1/[3^(n-1) + 2.3^(n-2)+...+2^(n-1)]
< 1/3^(n-1) ( for n>= 2 )
a^n-b^n = (a-b)[a^(n-1)+a^(n-2).b +....+b^(n-1) ]
1/a1+1/a2+...+1/an
=1+ 1/a2+...+1/an
< 1+ [1/3^1+1/3^2+....+1/3^(n-1) ]
= 1+ (1/2)( 1- 1/3^n)
< 1+1/2
=3/2

收起

求:设数列 {an}的前n项和为Sn,数列{Sn}的前n项和为Tn,满足Tn=2Sn一n²,n∈求:设数列 {an}的前n项和为Sn,数列{Sn}的前n项和为Tn,满足Tn=2Sn一n²,n∈N 已知数列{an}的前n项和为Sn,满足an+Sn=2n. (Ⅰ)证明:数列{an-2}为等比数列,并求出an;已知数列{an}的前n项和为Sn,满足an+Sn=2n.(Ⅰ)证明:数列{an-2}为等比数列,并求出an;(Ⅱ)设bn=(2-n) 已知数列An满足An>0,其前n项和为Sn为满足2Sn=An的平方+An(1)求An(2)设数列Bn满足An/2的n次方,Tn=b1+b2+ 设数列an的前n项和为Sn,满足an+sn=An^2+Bn+1(A不等于0)an为等差数列,求(B-1)/A 设数列{an}的前n项和为Sn,数列{Sn}的前n项和为Tn,满足Tn=2Sn-n^2,n∈N*.求a1的值以及an的通项公式. 设数列{an}前n项和为Sn,且满足S1=2,S(n+1)=3Sn+2.一,证明数列是等比数列并...设数列{an}前n项和为Sn,且满足S1=2,S(n+1)=3Sn+2.一,证明数列是等比数列并求出通项?二,求数列{nan}的前n项的和Tn 设数列{an}的前n项和为Sn,数列{Sn}的前n项和为Tn,满足Tn=2Sn-n2,n∈N*.求a1的值以及an的通项公式. 设数列{an}的前n项和为Sn,且满足Sn-Sn-1+2SnSn-1=0(n≥2)设数列{an}的前n项和为Sn,且满足Sn-S(n-1)+2SnS(n-1)=0(n≥2),a1=1/2.1 求证,数列{1/Sn}是等差数列 2 求an的通项公式 设数列An的前n项和为Sn,满足2Sn=An+1 -2^n+1+1,且A1.A2+5.A3成等差数列 求数列的设数列An的前n项和为Sn,满足2Sn=An+1 -2^n+1+1,且A1.A2+5.A3成等差数列 求数列的通项公式 已知以1为首项数列{an}满足: an +1(n为奇数) an+1={an/2(n为偶数)}设数列{an}前n项和为sn,求数列{sn}前n项和Tn 数列(an),a1=1,当n≥2,其前n项和Sn满足Sn^2=an(Sn-1)证(1/Sn)是等差数列.设bn=log以2为底Sn/S(n+2),bn的前n项和Tn,求满足Tn≥6的最小正整数n 已知数列{an}的前n项和为sn,满足an+sn=2n ① 证明∶数列{an-2}为等比数列,并求出an ②设bn=(2-N)(an-2),求{bn}的最大项 设数列{an}的前n项和为Sn,且满足S1=2,S(n+1)=3Sn+2(n=1,2,3) 设bn=2,S(n+1)=3Sn+2(n=1,2,3.) 注:n+1设数列{an}的前n项和为Sn,且满足S1=2,Sn+1=3Sn+2(n=1,2,3) 设bn=2,Sn+1=3Sn+2(n=1,2,3.)设bn=an比Sn平方,求证b1+b2+b3.bn 【高考】若数列{an}满足,a1=1,且a(n+1)=an/(1+an),设数列{bn}的前n项和为Sn,且Sn=2-bn,求{bn/an}的前...【高考】若数列{an}满足,a1=1,且a(n+1)=an/(1+an),设数列{bn}的前n项和为Sn,且Sn=2-bn,求{bn/an}的前n项和Tn 高一数学数列的题目(在线等答案)设等差数列{an}的前n项和为Sn,且a1=2,a3=6,设数列{1/Sn}的前n项和是Tn,求T2013的值(已求出 an=2n,Sn=n^2+n)设数列{an}的前n项和为Sn,an与Sn满足an+Sn=2,令bn=Sn+mS(n+1), 设数列{an}的前n项和为Sn,且3Sn=an+4.(1)求数列{an}的通项公式;(2)若数列{bn}满足bn=3Sn,求数列...设数列{an}的前n项和为Sn,且3Sn=an+4.(1)求数列{an}的通项公式;(2)若数列{bn}满足bn=3Sn,求数 若等差数列{an}的前n项和为Sn,且满足Sn/S2n为常数,则称该数列为S数列 若首项为a1的各项为正数的等差数列{an}是S数列,设n+h=2008,(n,h为正数) 求1/Sn+1/Sh的最小值 Sn、Sh分别是数列的前n项和和 数列{an},中,a1=1/3,设Sn为数列{an}的前n项和,Sn=n(2n-1)an 求Sn