n维列向量α1,α2,α3,...α(n-1)线性无关,且与非零向量β1,β2正交,证β1,β2线性相关.
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/23 22:17:52
xRݎ@~ԥB7^ޑ&
@W[,-7!̜i75zIɜ˅@*zGNߜNγ9ZYg$? t,xS[SAEX:Mɴ2BiAU?CbZuu%f '@ngPs,ٔ#URc :>&QLx;Sd-^Gq,^(PP3ȣZ|+y}86^Ǭf b BoAPOG"zĽM)27= S~3=|mUpEaƪ{h{2
't3Kj65|^N[3֨Ճ-o|E"C&]*s$=4ofNyAw"*C~6z)2a[?1%uQ%![tU#7Opz
n维列向量α1,α2,α3,...α(n-1)线性无关,且与非零向量β1,β2正交,证β1,β2线性相关.
n维列向量α1,α2,α3,...α(n-1)线性无关,且与非零向量β1,β2正交,证β1,β2线性相关.
n维列向量α1,α2,α3,...α(n-1)线性无关,且与非零向量β1,β2正交,证β1,β2线性相关.
假设β1可由α1,α2,α3,.α(n-1)线性表出,
记 β1=k1*α1+k2*α2+k3*α3+……+k(n-1)*α(n-1)
由于α1,α2,α3,.α(n-1)与β1 正交
即αi点乘β1=0(i=1,……,n-1)
可推出ki=0(i=1,……,n-1)即β1=0与题设相矛盾,
则有α1,α2,α3,.α(n-1),β1线性无关
同理α1,α2,α3,.α(n-1),β2线性无关
由于n+1个n维向量必线性相关,以及上述两个结论,可得
β1,β2线性相关
由于地震灾区急需生活饮用水,市政府要求该厂每天必须多生产10吨矿泉水该厂决定每天的利润不超过原利润,但不少于8000元,请写出该厂每天最多生产乙种矿泉水多少吨
设A为n阶可逆矩阵,α1,α2,…αn为 n个线性无关的n维列向量.证明向量Aα1,Aα2,…Aαn线性无关.
A是n阶矩阵,α1,α2……αn是n维列向量,αn≠0,Aα1=α2,……,Aαn-1=αn,Aα
A是n阶矩阵,α1,α2……αn是n维列向量, αn≠0,Aα1=α2,……,Aαn-1=αn,Aα
n维行向量与n维列向量是否是同型向量?n维行向量可以和n维列向量相乘吗?即αтβ是否成立?
n维列向量α1,α2,α3,...α(n-1)线性无关,且与非零向量β1,β2正交,证β1,β2线性相关.
几代:设α是n维列向量(n > 1),则n阶方阵A = ααT 的行列式|A|的值为?
关于特征值与特征向量的问题!题:设A是N阶矩阵(N≥2),α1,α2,…αn是N维列向量,其中αn≠0,若Aα1=α2,Aα2=α3,Aα(n-1)=αn,Aαn=0.第一问证α1…αn线性无关,已经证出!第二问问A可否对角化怎么求?说
向量空间证明题怎么证明?设α1,α2...,αn和β1,β2,...βn是n维列向量空间R^n的两个基,证明:向量集合 V={α∈R^n|α=∑(i=1到n)kiαi=∑(i=1到n)kiβi}是R^n的子空间.
设A为n阶方阵,α1,α2,...,αn为线性无关的n个n维列向量.证明:R(A)=n﹤=﹥ Aα1,Aα2,...,Aαn线性无关【向量的秩】
高代题:设A是n级方阵,α是n维列向量,若A^n-1α≠0,而A^nα=0,试证明α,Aα,…,A^n-1α 线性无关
设α使n维列向量,A是n阶正交矩阵,则||Aα||=||α||
设n维列向量组α1,α2,…,αm(m<n)线性无关,则n维列向量组β1,β2,…,βm线性无关的充分必要条件为 ( )A.向量组α1,α2,…,αm可由向量组β1,β2,…,βm线性表示B.向量组β1,β2,…,βm可由向量组α1,α2,
试证:若n维单位向量组ε1,ε2,...,εn可由n维向量组α1,α2,...,αn线...试证:若n维单位向量组ε1,ε2,...,εn可由n维向量组α1,α2,...,αn线性表示,则α1,α2,...,αn线性无关
设A是m×n矩阵,且r(A)=1,则存在m维列向量α与n维列向量β,使得A=α×(β的转置)
设α为n维列向量,E为n阶单位矩阵,证明A=E-2αα^T/(α^Tα)是正交矩阵
n维向量与矩阵乘法.一个矩阵与一组向量的乘法若向量组α1.αs,为n维列向量,设该向量组为B,A为mxn的矩阵,则BA=(Aα1,Aα2,.Aαs).BA的结果怎么的出来的?我脑子转不过来.
n维列向量α1,α2,α3,...α(n-1)线性无关,且与非零向量β1,β2正交,证明β1,β2线性相关;α1,α2,α3,...α(n-1),β1线性无关.
n维列向量是什么