已知x-y-z=17,x∧2+y∧2+z∧2=81,求yz-xz-xy的值

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/25 19:38:43
已知x-y-z=17,x∧2+y∧2+z∧2=81,求yz-xz-xy的值
x){}K+t+ul u*u,7ҮU PƦ* |>i"}2uPb=`mtVqUUp%XΆ'Œ540/.H̳A5\n4`j"٥H2(5LEA6ZXQ.

已知x-y-z=17,x∧2+y∧2+z∧2=81,求yz-xz-xy的值
已知x-y-z=17,x∧2+y∧2+z∧2=81,求yz-xz-xy的值

已知x-y-z=17,x∧2+y∧2+z∧2=81,求yz-xz-xy的值
(x-y-z)^2=x^2+y^2+z^2+2yz-2xz-2xy=289
所以yz-xz-xy=104

(x-y-z)^2=17*17=289
(x-y-z)^2=x^2+y^2+z^2+2(yz-xz-xy)
所以 2(yz-xz-xy)=(x-y-z)^2—(x^2+y^2+z^2)=289-81=208
yz-xz-xy=104