圆x^2+y^2-2x-4y-1=0关于直线x-y+3=0对称的曲线方程是

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/27 19:30:15
圆x^2+y^2-2x-4y-1=0关于直线x-y+3=0对称的曲线方程是
xRN@! H\A4= jmۺ@۴ոhúg+~;lue\Mι{ȅ^y1"+d+4X9ĉQޡ:Ѩ&)|!'ث@e"!L4^^خ (WG5,9Qr= iN/,b /v؇ҐNȚP/U`[P 78(h^DΈpx8` ~7*6!¹չ611.iEą7uD^ >vMLf6±Kח]\&[HY #Z$_AjINflY AK foȰa

圆x^2+y^2-2x-4y-1=0关于直线x-y+3=0对称的曲线方程是
圆x^2+y^2-2x-4y-1=0关于直线x-y+3=0对称的曲线方程是

圆x^2+y^2-2x-4y-1=0关于直线x-y+3=0对称的曲线方程是
圆x^2+y^2-2x-4y-1=0,即(x-1)^2+(y-2)^2=6的圆心坐标为A(1,2),只需求出A关于直线x-y+3=0的对称点A'即可,只是改变圆心位置,半径不变.设A'坐标为(m,n),由AA'垂直于直线且AA'中点C((m+1)/2,(n+2)/2)在直线上可得:(n-2)/(m-1)=-1,(m+1)/2-(n+2)/2+3=0.联立两方程可得,m=-1,n=4.故A'(-1,4),所以对称的曲线方程为(x+1)^2+(y-4)^2=6.

圆x^2+y^2-2x-4y-1=0得到(x-1)^2+(y-2)^2=4
圆心(1,2)关于直线x-y+3=0对称圆心为(-1,4)
半径不变为2
所求方程(x+1)^2+(y-4)^2=4