1/(1*3)+1/(3*5)+1/(5*7)+...+1/((2n-1)(2n+1))=17/35求n的值

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 14:20:28
1/(1*3)+1/(3*5)+1/(5*7)+...+1/((2n-1)(2n+1))=17/35求n的值
x)302Z`T\S[OO05چƦ66=aMR>e ڌ4 u :L}c Q2 Eu5@Azt k m a2 a[(;h~qAb(p

1/(1*3)+1/(3*5)+1/(5*7)+...+1/((2n-1)(2n+1))=17/35求n的值
1/(1*3)+1/(3*5)+1/(5*7)+...+1/((2n-1)(2n+1))=17/35求n的值

1/(1*3)+1/(3*5)+1/(5*7)+...+1/((2n-1)(2n+1))=17/35求n的值
1/(1*3)+1/(3*5)+1/(5*7)+...+1/((2n-1)(2n+1))=17/35
1/2(1-1/3)+1/2(1/3-1/5)+……+1/2[1/(2n-1)-1/(2n+1)]=17/35
1-1/3+1/3-1/5+……+1/(2n-1)-1/(2n+1)=34/35
1-1/(2n+1)=34/35
1/(2n+1)=1-34/35=1/35
2n+1=35
n=17