(2n+1)/2^(n+1)*x^2n级数求和!
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/27 20:00:28
xKA-y3ofg4b̮F,=ВB衇<R;H/"ރyjn6eK}"l'-w;>m}~6祭8(Gka;o[ݰO&!~^Tx2}^x3&:-)]gۊRRr BB'F4NPA,k@+ *Ru *x2 )w:X- 32=2#pT%YxǖEA)t
(2n+1)/2^(n+1)*x^2n级数求和!
(2n+1)/2^(n+1)*x^2n级数求和!
(2n+1)/2^(n+1)*x^2n级数求和!
思路应该没错,先逐项积分对和式求导
f(x)=e^x-x 求证(1/n)^n+(2/n)^n+...+(n/n)^n
求极限lim(x→∞)(1/n+2/n+3/n..+n/n)
2n/(n+1)n!
f(X+1)=lim(n-无穷)(n+x)/n-2)n 求f(x)
若(x^2+1/x)^n(n∈N+,n
x^n(y^2n-1)/x^n-1(y^n+1)
x^n(y^2n-1)/x^n-1(y^n+1)
n趋近于无穷大,(1+ x^n+(x^2)/2)^n)^1/n的极限
2^n/n*(n+1)
x趋于无穷大lim(1/n²+2/n²+...+n/n²)=
当n取何值时,y=(n²+2n)x ^n²+n-1x ^n²+n-1 ^后面的是幂数
证明不等式:(1/n)^n+(2/n)^n+(3/n)^n+.+(n/n)^n
微积分:关于当(x→∞),(1+1/n)^n的极限的例题中,设x(n)=(1+1/n)^n,(n=1,2,…),证明数列{x(n)}是单调増加且有界,由牛顿二项公式 有x(n)=(1+1/n)^n=1+n/1!*1/n+[n(n-1)]/2!*(1/n)^2+[n(n-1)(n-2)]/3!*(1/n)^3+…+{n(n-1)
x^(n)*x^(n+1)+x^(2n)*x
lim[n/(n*n+1*1)+n/(n*n+2*2)+...+n/(n*n+n*n)],当x趋向无穷大时,怎么求极限,
求证1^2/1.3+2^2/3.5+…+x^2/((2n-1)(2n+1))=(n(n+1)/(2(2n+1)),n属于N
1*N+2*(N-1)+3*(N-2)+...+N*1=1/6N(N+1)(N+2)
因式分解:(x^n+1)+(2x^n)+(x^n-1)