怎样证明e是超越数?

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 07:29:48
怎样证明e是超越数?
xTn@ b01#_/ZU b(K$4`0.vS~6T=g̜NnxcwÏ+?;*Usp|;?:VmwlaAM}CX@W,rҢpwޠ-jNstbVj 6SjCX e (lQ~?*$Y ZX00+&c"pGeY^ OILp>V 8:UVb^O.%dU,^1:+ Wm )HHU$K>?W a'So;?s3{]g1W/c0%*2~<OD } uH2V:O &tZE횛uF2!SlV]B"A- t gk^a[Ʀj^KX> DbœҜظFkk4,^NHvݦf+_98 Ns>i{Ro^.HPhFe>BaoPV?@rsѦ7] ?8 ^*0ӽd z8UW<[nsnq>]]6!e7c;927$%>@)X

怎样证明e是超越数?
怎样证明e是超越数?

怎样证明e是超越数?
我来给你说说吧:
e=lim(1+ 1/n)^n ------(n→+∞) 这个是e的定义.
下面就来给你说为什么 e=1/0!+ 1/1! +1/2! +1/3! +.1/n!
令 An=(1+ 1/n)^n
=1^n + n*1/n + (1/2!)*(1- 1/n) + (1/3!)*(1-1/n)(1-2/n) +...+ (1/n!)*(1-1/n)(1-2/n).(1- (n-1)/n)
An是单调增的序列 把 第k+1,k+2.n 项去掉得到:
An> 2+(1/2!)*(1- 1/n) + (1/3!)*(1-1/n)(1-2/n)+.+(1/k!)*(1-1/n)(1-2/n).(1- (k-1)/n) =Xk
固定k让n 趋近无穷 ,那么括号里面全都是1,就有:
e>2+ 1/2! +1/3! +1/4!+...+1/k! = Yk >Xk
可以看出 对于任何自然数k 恒有不等式:
Xk< Yk < e
当k趋近于无穷大时 有Xk=e 根据夹逼准则有 Yk =e ---(k→+∞)
所以有 e = 1/0! +1/1! +1/2! +1/3!+.+1/n!
你上大学后就明白了
突然想到可以给你换个说法:
当 n 等于一个具体的数时,这两个东西不相等
比如 n=100
(1+ 1/100)^100 ≠ 1/0! +.+1/100!
但是当n趋近于无穷大时 它们都=e.
你必须清楚“趋近于无穷大”这个概念你才能理解这个东西