关于离散数学中集合的问题有限集是否一定是可数集啊?设A是有限集,B是可数集,为什么A和B的笛卡尔积集是无限集啊?

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 13:54:12
关于离散数学中集合的问题有限集是否一定是可数集啊?设A是有限集,B是可数集,为什么A和B的笛卡尔积集是无限集啊?
xWN"I~/GìFlbvof"& 4#'QD<#*44'7qxl1f'MLPO__=;.ˣo*-ֽ+oh̃ .vs$x%k>B|{lDZm_ '#>UټP!ːx(SBmXM{è$=DBDD)C M >,.iF^04މ j#`_v"p2$i&O[Cנ[^/0\༳fxrZ8YhaI1)qA|J8*G+X[~oS"1:;ZäQ?E{7k TôÐ/q_ '"۹O.Eiiqۋls&ii]\uTSvS|>߸f|] }fdL:][A 1L/3E^f QOcƎ[(ŠF8ѭ]뙵0vh-BhY?fs(=A76-3q8Uq9IUz'ÄK/=L-c&p:6-$g}Nţt&iWwSb1 N3axp'W;yS%eR_0D UQGp0@}/k!pDg~!S&rSZ"͋{=JW]=PLhnC}axt{YI8I_c_0ExZYΠu!v ͅ/P yh*dծxS2u湨mS0$?JC깵sڬJwO$cVJ7 _8)Y _2g

关于离散数学中集合的问题有限集是否一定是可数集啊?设A是有限集,B是可数集,为什么A和B的笛卡尔积集是无限集啊?
关于离散数学中集合的问题
有限集是否一定是可数集啊?
设A是有限集,B是可数集,为什么A和B的笛卡尔积集是无限集啊?

关于离散数学中集合的问题有限集是否一定是可数集啊?设A是有限集,B是可数集,为什么A和B的笛卡尔积集是无限集啊?
有限集不是可数集.令N是正整数的全体,且N={1,2,3,……,n},如果存在一个正整数n,那么N叫做有限集合.但是你数得清集合里面有多少个元素吗,当然不能咯.
空集也被认为是有限集合.但是空集里面摸有元素.
设A是有限集,B是可数集,为什么A和B的笛卡尔积集是无限集啊?
对于这个问题,你首先想想A和B的笛卡尔积集是什么,对了,就是A×B,也就是从A里拿一个元素x,然后再到B里拿一个元素y,然后就知道了(x,y)属于A×B咯.就像刚刚我所说的A是有限集,但是它不可数.所以A×B就也不可数了咯,然后也就有无限钟排列组合了.所以它是无限集.
懂了吗?

集合按元素个数有限还是无限多分为有限集和无限集。
无限集分为可数集和不可数集。
如有理数集合是可数集,实数集是不可数集合。
命题证明如下,
证明:
(定理:有限个可数集的并集还是可数集 )
设有限集A={a1,a2,……,an},可数集B={b1,b2,……}
则A*B={a1,a2,……,an}*{b1,b2,……}
=...

全部展开

集合按元素个数有限还是无限多分为有限集和无限集。
无限集分为可数集和不可数集。
如有理数集合是可数集,实数集是不可数集合。
命题证明如下,
证明:
(定理:有限个可数集的并集还是可数集 )
设有限集A={a1,a2,……,an},可数集B={b1,b2,……}
则A*B={a1,a2,……,an}*{b1,b2,……}
={(a1,b1),(a1,b2),……,(a1,bn),……}+……+{(an,b1),(an,b2),……(an,bn),……}
观察bn的下标可知右边每一个集合都是可数集,n个可数集的并集也可数。
证毕!

收起

主要是对概念理解不深刻。
可数集也称至多可列集,包括两种集合,即有限集和可列集(可列集就是与自然数集等势的集合)
所以第一个问题显然了。
第二个问题问得就不对了,你说的“B是可数集”这里吧可数集和可列集等同了。“A和B的笛卡尔积集是无限集”,这里无限集也是不正确的,无限集分为可数无限集和不可数无限集,“无限”只是相对“有限”而言,可数集不一定是无限集,但是可数集中的可列集是...

全部展开

主要是对概念理解不深刻。
可数集也称至多可列集,包括两种集合,即有限集和可列集(可列集就是与自然数集等势的集合)
所以第一个问题显然了。
第二个问题问得就不对了,你说的“B是可数集”这里吧可数集和可列集等同了。“A和B的笛卡尔积集是无限集”,这里无限集也是不正确的,无限集分为可数无限集和不可数无限集,“无限”只是相对“有限”而言,可数集不一定是无限集,但是可数集中的可列集是无限集,不可数集一定是无限集。
设A是有限集,B是可数集,那么A和B的笛卡尔积集有以下几种情况:
1、如果B是可数集里的有限集,那么A和B的笛卡尔积集还是有限集,且有|A×B|=|A|×|B|,|*|表示集合的势(基数)
2、如果B是可数集里的可列集,那么A和B的笛卡尔积集是可列集,且有|A×B|=|B|=|N|=Aleph0(阿列夫零,希伯来文),此时说A和B的笛卡尔积集是无限集是正确的。

收起