已知正数x,y,z满足x+2y+3z=1,求最小值
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/27 14:31:06
xMK0LM]_$mum!xA<ED<
SAE?FͿ`W6$)<<ɛZTO?.ot/,w($iMv?Z\Q"B/wSݨ40
vlH=C0] ֙i8l"-9QPAC#RA
.5. "&؎O-=o!}S\UXC> t-%[b]T0=Iv6Jىzـ`,D,F:qm_T\e6'_L4-m~M/ 3r===Jǣʜ8y
已知正数x,y,z满足x+2y+3z=1,求最小值
已知正数x,y,z满足x+2y+3z=1,求最小值
已知正数x,y,z满足x+2y+3z=1,求最小值
依Cauchy不等式得
[(x+2y)+(2y+3z)+(3z+x)][1/(x+2y)+4/(2y+3z)+9/(3z+x)]≥(1+2+3)²
↔1/(x+2y)+4/(2y+3z)+9/(3z+x)≥36/[2(x+2y+3z)]=18.
故所求最小值为:18.
已知正数x,y,z满足x+2y+3z=1,求最小值
一道高中不等式证明题已知正数x,y,z满足x+y+z=1求证:x^2/(y+2z)+y^2/(z+2x)+z^2/(x+2y)>=1/3
已知正数x,y,z满足x+y+z=1求证x^2/y+2z +y^2/z+2x +z^2/x+2y≥1/3
已知实数x y z满足x/(x+1)=y/(y+2)=z/(z+3)=(x+y+z)/3,求x+y+z的值
已知实数x y z满足x/(x+1)=y/(y+2)=z/(z+3)=(x+y+z)/3,求x+y+z的值
已知正数x,y,z满足x+y+z=xyz.求不等式1/(x+y) + 1/(y+z) + 1/(z+x)的最大值
已知x,y,z都是正数,且xyz=1,求证:x^2/(y+z)+y^2/(x+z)+z^2/(x+y)≥3/2
已知正数x,y,z满足x+2y+3z=1,则(1/(x+2y))+(4/(2y+3z))+(9/(3z+x))的最小值为?
已知正数X.Y.Z满足X+Y+Z=1求4^X+4^Y+4^(Z^2)的最小值
1 设x、y、z属于R且(x-1)^2/16+(y+2)^2/5+(z-3)^2/4=1,则x+y+z的最小值为?2 已知正数x,y,z满足x+y+z=xyz,且不等式1/(x+y) + 1/(y+z)+ 1/(z+x)小于等于k恒成立,求k的取值范围
已知实数x,y,z满足x+y+z=2根号x-1+2根号y-1+2根号z-1求X+2Y+3Z
已知实数xyz满足x/(x+1)=y/(y+2)=z/(z+3)=(x+y+z)/3求x+y+z的值
设正数xyz满足2x+3y+4z=9,则1/x+y +4/2y+z +9/3z+x最小值
正数XYZ满足(X+Y)(X+Z)=2则XYZ(X+Y+Z)最大值
已知正数x.y.z满足x+y+z=1,求证:(1):(1/x-1)(1/y-1)(1/z-1)大于等于8;(2):1/x+1/y+1/z大于等于9
已知x,y,z为正数,3^x=4^y=6^z,2x=py证明1/z-1/x=1/2y
已知x ,y ,z都是正数且满足xyz(x+y+z)=1试求(x+y)(y+z)取得最小值时x,y,z的值各是多少?书上的解答是这样的:因为x ,y ,z都是正数,所以(x+y)+(y+z)>(x+z),(y+z)+(z+x)>(x+y),(z+x)+(x+y)>(y+z),于是可
正数XYZ满足(X+Z)/2=1-Y,则(X+Y)×(Y+Z)的最大值