已知函数f(x)=2cosxsin(x+π/6)-sin²x+cos²x,(1)求函数f(x)的单调递增区间;(2)当x∈[-π/12,π/6],求函数f(x)的最大值、最小值及相应的x值

来源:学生作业帮助网 编辑:作业帮 时间:2024/12/02 08:08:07
已知函数f(x)=2cosxsin(x+π/6)-sin²x+cos²x,(1)求函数f(x)的单调递增区间;(2)当x∈[-π/12,π/6],求函数f(x)的最大值、最小值及相应的x值
xՓJA&eזɂV$ - LR4 Je}]Wn&ns7̙U|o_L,6}Fk)HS?쌼(P M}ngkwI8h8#ai`}M@WF"UJ.kD5^m7t~`UZSCnIvΚbm3HɈ{Fn!il4Ek bȎ&!:. *ȠF>(~ǔϋq#<S`ֳؗ=jP_{ݣxO 48&ơlD:g~\ŀz3)HVvue'($"g%6r{p> Ed:+Z!eɱ09EJ%W+),!ڍU~me.ٻ%>UAum

已知函数f(x)=2cosxsin(x+π/6)-sin²x+cos²x,(1)求函数f(x)的单调递增区间;(2)当x∈[-π/12,π/6],求函数f(x)的最大值、最小值及相应的x值
已知函数f(x)=2cosxsin(x+π/6)-sin²x+cos²x,
(1)求函数f(x)的单调递增区间;
(2)当x∈[-π/12,π/6],求函数f(x)的最大值、最小值及相应的x值

已知函数f(x)=2cosxsin(x+π/6)-sin²x+cos²x,(1)求函数f(x)的单调递增区间;(2)当x∈[-π/12,π/6],求函数f(x)的最大值、最小值及相应的x值
2cosxsin(x+π/6)-sin²x+cos²x
=2cosx﹙sinxcosπ/6+cosxsinπ/6﹚+cos2x
=√3cosxsinx+cos²x+cos2x
=√3sin2x/2+﹙cos2x+1﹚/2+cos2x
=√3sin2x/2+3cos2x/2+1/2
=√3(sin2x/2+√3cos2x/2﹚+1/2
=√3(sin﹙2x+π/3﹚+1/2
∵2x+π/3∈[2kπ-π/2,2kπ+π/2],k∈Z时,f(x)递增
∴函数f(x)的单调递增区间是[kπ-5π/12,kπ+π/12],k∈Z
当x∈[-π/12,π/6],2x+π/3∈[π/6,2π/3]
∴当2x+π/3=π/2即x=π/12时,f(x)的最大值是√3+1/2;
当2x+π/3=π/6即x=﹣π/12时,f(x)的最小值是√3/2+1/2.

利用万能公式解即可